当前位置:网站首页>【GCN-RS】Learning Explicit User Interest Boundary for Recommendation (WWW‘22)
【GCN-RS】Learning Explicit User Interest Boundary for Recommendation (WWW‘22)
2022-07-25 13:08:00 【chad_ lee】
Learning Explicit User Interest Boundary for Recommendation (WWW’22)

Pointwise loss:
L = ∑ ( u , x ) ∈ T ψ ( s ( u , x ) , l ( u , x ) ) \mathcal{L}=\sum_{(u, x) \in \mathcal{T}} \psi(s(u, x), l(u, x)) L=(u,x)∈T∑ψ(s(u,x),l(u,x))
Pairwise loss:
L = ∑ ( u , p ) ∈ I ∑ ( u , n ) ∉ I ϕ ( s ( u , n ) − s ( u , p ) ) \mathcal{L}=\sum_{(u, p) \in I} \sum_{(u, n) \notin I} \phi(s(u, n)-s(u, p)) L=(u,p)∈I∑(u,n)∈/I∑ϕ(s(u,n)−s(u,p))
Mixed loss :
L = ∑ ( u , p ) ∈ I ϕ ( b u − s ( u , p ) ) ⏟ L p + α ∑ ( u , n ) ∉ I ϕ ( s ( u , n ) − b u ) ⏟ L n \mathcal{L}=\underbrace{\sum_{(u, p) \in \mathcal{I}} \phi\left(b_{u}-s(u, p)\right)}_{L_{p}}+\underbrace{\alpha \sum_{(u, n) \notin I} \phi\left(s(u, n)-b_{u}\right)}_{L_{n}} L=Lp(u,p)∈I∑ϕ(bu−s(u,p))+Lnα(u,n)∈/I∑ϕ(s(u,n)−bu)
b u = W T P u , ϕ : M a r g i n L o s s or L n S i g m o i d b_{u}=W^{T} P_{u}, \ \ \phi:\ MarginLoss or LnSigmoid bu=WTPu, ϕ: MarginLoss or LnSigmoid

It can also be regarded as a kind of debias Methods , b u b_{u} bu It's a scalar , And the only user embedding of , So for popularity bias Big users ,s Often very large , At this time, set a higher limit for him margin value , It is equivalent to setting a dynamic margin loss.
There's another possibility , Optimize positive samples loss L p L_p Lp, Will increase the positive sample score s ( u , p ) s(u, p) s(u,p), Reduce the boundary fraction b u b_u bu, therefore b u b_u bu stay loss It can be seen as a kind of high-frequency user Penalty regularization of .
边栏推荐
- massCode 一款优秀的开源代码片段管理器
- JS sorts according to the attributes of the elements in the array
- The programmer's father made his own AI breast feeding detector to predict that the baby is hungry and not let the crying affect his wife's sleep
- 微软提出CodeT:代码生成新SOTA,20个点的性能提升
- Summary of Niuke forum project deployment
- Shell常用脚本:检测某域名、IP地址是否通
- 卷积神经网络模型之——GoogLeNet网络结构与代码实现
- Vim技巧:永远显示行号
- 【运维、实施精品】月薪10k+的技术岗位面试技巧
- [300 opencv routines] 239. accurate positioning of Harris corner detection (cornersubpix)
猜你喜欢

零基础学习CANoe Panel(13)—— 滑条(TrackBar )

Atcoder beginer contest 261 f / / tree array

OAuth,JWT ,OIDC你们搞得我好乱啊

Convolutional neural network model -- alexnet network structure and code implementation

卷积核越大性能越强?一文解读RepLKNet模型

Introduction to web security UDP testing and defense

OAuth, JWT, oidc, you mess me up

MLX90640 红外热成像仪测温传感器模块开发笔记(五)

【AI4Code】《CodeBERT: A Pre-Trained Model for Programming and Natural Languages》 EMNLP 2020

Moving Chinese figure liushenglan
随机推荐
The programmer's father made his own AI breast feeding detector to predict that the baby is hungry and not let the crying affect his wife's sleep
迁移PaloAlto HA高可用防火墙到Panorama
《富兰克林自传》修身
JS sorts according to the attributes of the elements in the array
【CSDN 年终总结】结束与开始,一直在路上—— “1+1=王”的2021总结
若依如何实现用户免密登录配置方法?
mysql函数汇总之日期和时间函数
部署Apache网站服务以及访问控制的实现
简单了解流
【AI4Code】《Unified Pre-training for Program Understanding and Generation》 NAACL 2021
Oran special series-21: major players (equipment manufacturers) and their respective attitudes and areas of expertise
Want to go whoring in vain, right? Enough for you this time!
[machine learning] experimental notes - emotion recognition
错误: 找不到或无法加载主类 xxxx
Zero basic learning canoe panel (16) -- clock control/panel control/start stop control/tab control
word样式和多级列表设置技巧(二)
Can flinkcdc import multiple tables in mongodb database together?
【视频】马尔可夫链蒙特卡罗方法MCMC原理与R语言实现|数据分享
Deep learning MEMC framing paper list
Detailed explanation of the training and prediction process of deep learning [taking lenet model and cifar10 data set as examples]