当前位置:网站首页>Chenyun pytorch learning notes_ Build RESNET with 50 lines of code
Chenyun pytorch learning notes_ Build RESNET with 50 lines of code
2022-06-27 23:57:00 【51CTO】

import torch as t
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
# Residual fast Residual network formula a^[L+2] = g(a^[L]+z^[L+2])
class ResidualBlock(nn.Module):
def __init__(self, inchannel, outchannel, stride=1, shortcut=None): #shortcut=None Corresponding to the solid line of cross layer connection in the figure , Corresponding residual network formula a^[L+2] = g(a^[L]+z^[L+2]), Otherwise, it should be
# The dotted line of the first residual block after the number of channels changes , At this time, the corresponding residual formula is a^[L+2] = g(z^[L+1]+z^[L+2])
nn.Module.__init__(self)
self.left = nn.Sequential(# obtain z^[L+2]
nn.Conv2d(inchannel, outchannel, 3, stride, 1, bias=False),
nn.BatchNorm2d(outchannel),
nn.ReLU(inplace= True),
nn.Conv2d(outchannel, outchannel, 3, 1, 1, bias=False),
nn.BatchNorm2d(outchannel))
self.right = shortcut# Decide whether the cross layer connection is a solid line or a dotted line
def forward(self, x):
out = self.left(x)
residual = x if self.right is None else self.right(x)
out += residual
return F.relu(out) #a^[L+2] = g(a^[L]+z^[L+2])
# ResNet34
class ResNet(nn.Module):
def __init__(self, num_classes=1000):
nn.Module.__init__(self)
# The first few layers of image conversion ( Network input part )
self.pre = nn.Sequential(# Corresponding to the part in the figure before starting the residual processing
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(3, 2, 1)
)
# Intermediate convolution part
self.layer1 = self._make_layer(64, 64, 3)
self.layer2 = self._make_layer(64, 128, 4, stride=2)#stride=2 Representing the first layer of each residual error 2/
self.layer3 = self._make_layer(128, 256, 6, stride=2)
self.layer4 = self._make_layer(256, 512, 3, stride=2)
# The average pooling
self.avgpool = nn.AvgPool2d(7, stride=1)
# Full connection for classification
self.fc = nn.Linear(512, 1000)
def _make_layer(self, inchannel, outchannel, block_num, stride=1):
# Adjust the number of input and output channels to be consistent . Like the second one layer when , The first residual fast input is 64, Output is 128
shortcut = nn.Sequential(# The first cross layer straight line corresponding to the fast residuals of the same number of channels of each type is a dotted line
nn.Conv2d(inchannel, outchannel, 1, stride, bias=False),
nn.BatchNorm2d(outchannel))
layers = []
layers.append(ResidualBlock(inchannel, outchannel, stride, shortcut))
for i in range(1, block_num):
layers.append(ResidualBlock(outchannel, outchannel))
return nn.Sequential(*layers)
def forward(self, x):
x = self.pre(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)#torch.Size([1, 512])
return self.fc(x)
model = ResNet()
input = t.autograd.Variable(t.randn(1, 3, 224, 224))
o = model(input)
print(o)
model = models.resnet34()# Call toolkit solid line residual network
o1 = model(input)
print(o1)
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
output


D:\anaconda\anaconda\pythonw.exe D:/Code/Python/pytorch Introduction and practice / Chapter four _ Neural network toolbox nn/ build ResNet.py
tensor([[-3.7385e-01, -2.2010e-01, 8.9218e-01, -6.6067e-01, -5.8422e-01,
7.6649e-01, -8.0401e-01, -3.0225e-01, 2.4314e+00, 9.1019e-01,
-1.1270e+00, -2.9847e-01, -6.0022e-01, -3.5480e-01, 3.5396e-01,
3.6958e-01, -5.9464e-01, -4.5049e-01, 7.3531e-01, -1.1082e+00,
-2.9160e-01, 4.7690e-01, -5.0259e-01, 4.1628e-01, -9.3588e-01,
2.4529e-01, 1.2500e+00, -1.6038e-01, -3.3023e-01, 3.6957e-01,
4.5195e-01, -6.0984e-01, 8.9558e-02, 4.2407e-01, 1.2888e+00,
-5.3017e-01, -5.0509e-01, 1.3775e+00, 2.0299e-01, 2.7299e-01,
-8.6381e-02, 8.3670e-01, 1.9371e-01, 8.4775e-01, 4.0002e-01,
8.1064e-01, -1.0556e+00, 7.7371e-01, 6.8891e-01, -1.0209e+00,
-3.1227e-01, 3.0977e-02, -2.9849e-01, 1.0534e+00, -1.8499e-01,
-8.6205e-01, -3.4020e-01, 4.2196e-01, -1.0207e-01, -1.2846e+00,
3.1905e-01, 9.9212e-01, 6.0208e-01, 6.2960e-01, 4.1285e-01,
-1.1597e+00, -2.5292e-01, 7.0145e-01, 4.8221e-01, 6.6790e-01,
2.8644e-01, -2.6554e-01, 3.4255e-01, 3.8341e-01, -4.2387e-01,
-7.5981e-01, 2.3203e-01, -3.8434e-01, -6.9346e-01, -5.4996e-01,
2.7865e-01, -3.9543e-01, -7.8868e-01, -6.5345e-01, 2.9946e-01,
5.2693e-01, -4.5380e-01, -2.2429e-01, -1.4129e+00, -3.7963e-01,
-2.2408e-01, -6.9917e-02, 1.7414e-01, -2.7821e-01, -6.4848e-01,
-4.3716e-01, -3.5371e-01, -3.6100e-01, -5.7401e-01, 3.7754e-01,
-4.1583e-02, -3.4307e-01, 5.9179e-01, 2.7279e-02, -2.6988e-01,
-4.7790e-01, -3.5140e-01, 5.1556e-01, 8.0434e-01, -4.4143e-01,
6.0849e-01, 3.3159e-01, -7.6929e-03, 1.0759e-01, 2.6402e-01,
2.3914e-01, -6.5949e-01, -9.0380e-01, -5.7449e-01, 8.1698e-01,
9.0535e-01, 3.7668e-01, 3.2937e-01, 4.5524e-01, 1.6086e-01,
-2.8713e-01, 1.7160e-01, 3.5057e-01, 7.0938e-01, -6.3579e-02,
-3.9463e-01, 2.6736e-01, -4.4593e-01, 1.0601e+00, -3.6988e-01,
-6.2878e-01, 3.7628e-01, 5.3490e-01, -3.2025e-01, -6.2648e-01,
-5.2117e-02, -4.0097e-01, -1.1775e+00, 1.2687e+00, 1.1808e+00,
3.4300e-01, -2.3935e-01, -7.8519e-01, 3.3952e-01, -2.1779e-01,
-4.9251e-01, -4.1354e-01, -7.1647e-01, 1.1502e+00, -9.0239e-01,
-1.8571e-01, 8.7283e-01, 5.6701e-01, 9.5695e-02, -2.6622e-01,
3.3122e-02, 5.8339e-01, 6.4253e-01, -1.2866e-01, 1.9386e+00,
3.0843e-01, 1.7281e-01, 1.3516e-01, -7.3507e-02, -3.3128e-01,
-6.3045e-02, -1.6130e-01, -6.2078e-01, 1.0369e+00, 7.4816e-01,
4.3222e-01, -1.2471e+00, -2.8628e-01, -2.2325e-01, -1.3061e+00,
6.0621e-01, 1.2517e+00, 7.9576e-01, 1.3829e-01, 3.0933e-01,
-5.7864e-01, -1.3680e-01, 4.2718e-01, 6.0374e-01, -6.5616e-01,
8.8827e-01, 6.1121e-01, 9.2531e-01, -9.0994e-01, -1.6550e+00,
-9.5535e-01, -1.3156e+00, 2.3245e-01, -4.6053e-01, 1.9782e-01,
-7.3612e-01, 7.3810e-01, -6.6007e-02, -5.0354e-01, 5.7257e-01,
-8.2178e-02, -1.0175e+00, -7.8140e-01, -8.3596e-02, 4.3341e-01,
6.1036e-01, -6.0388e-01, 3.3036e-01, 3.2923e-01, 1.2033e+00,
-6.1371e-01, -8.7145e-01, -7.0251e-02, -1.9632e-01, -4.0972e-01,
-6.5015e-01, -1.1036e+00, 4.5884e-01, -7.8906e-01, 9.7192e-01,
7.7442e-01, 3.4869e-01, 9.7635e-02, -9.9016e-01, 7.6778e-01,
3.5343e-01, 1.1142e-01, -1.4715e-01, -3.1201e-01, -4.6759e-01,
4.2290e-01, 2.9731e-01, -5.6528e-01, -4.6112e-01, -9.2171e-03,
2.7790e-01, 2.2434e-01, 8.3167e-01, 6.0836e-01, 7.9597e-01,
8.8949e-01, -5.5800e-01, -5.8002e-01, 2.3448e-02, -3.7334e-01,
-2.2329e-01, -1.1076e+00, -3.0460e-01, 1.4154e-02, 3.7740e-04,
9.9988e-02, -7.1763e-01, -2.9103e-01, 3.7885e-01, 4.5475e-01,
-8.8300e-01, -5.9084e-01, 1.0630e-01, -7.6122e-01, 5.6615e-01,
1.5967e-02, -1.3541e+00, -2.3975e-02, 3.4815e-01, 6.6317e-01,
3.3460e-01, 7.1318e-01, 1.1366e+00, 1.1671e+00, 5.2543e-02,
-8.5805e-01, 5.0632e-01, -1.0799e+00, -3.6625e-01, 6.3304e-01,
1.7650e-01, 1.2427e+00, -4.2824e-01, -9.7264e-01, -6.5294e-01,
-4.1995e-01, 1.6176e-01, 6.5306e-01, 6.5527e-01, 1.5359e-01,
-1.4403e-02, 5.5345e-01, -1.2129e+00, -1.6561e-01, -1.8614e-01,
-6.3296e-01, 9.8403e-01, 1.9044e-01, -7.3609e-01, 1.3295e-01,
-2.9614e-01, -2.6278e-01, 6.1773e-01, -2.6080e-02, -2.6567e-01,
2.1076e-01, -6.1336e-01, -3.0605e-01, 4.8003e-01, -3.7147e-01,
-3.3662e-01, 6.8647e-01, 1.2991e+00, 1.0152e+00, -4.5890e-01,
-4.8116e-01, 6.6182e-01, 2.0629e-01, 1.1687e+00, -1.4938e-01,
5.4687e-01, 2.8266e-01, 1.2739e+00, 2.1758e-01, 3.4379e-01,
-1.7554e-01, -2.9683e-01, -3.6898e-01, -3.4443e-01, 4.4539e-01,
6.2362e-01, -7.0732e-01, 6.8179e-01, -8.1357e-01, -2.9273e-02,
1.0692e-01, 3.0787e-01, -1.5126e-01, -6.9601e-01, -6.7925e-03,
-1.2032e-01, 4.3556e-01, -2.5765e-01, 3.5000e-01, 2.6138e-01,
-7.1060e-01, -7.8778e-01, -5.7865e-01, 1.9608e-02, -2.6077e-01,
2.3804e-01, 5.9406e-01, 6.5240e-01, 5.8997e-01, -2.6604e-01,
-8.2560e-01, -4.9733e-01, -1.1837e+00, -6.0205e-01, 4.3423e-01,
8.6452e-01, -6.5541e-01, -4.8626e-01, 6.9140e-01, 1.4461e-01,
-2.2926e-01, -2.0209e-01, -2.8848e-01, -9.6731e-01, -1.7899e-01,
-9.3281e-01, -1.1425e-01, 8.9797e-01, -1.6610e-01, -1.0455e+00,
-5.4111e-01, -6.5867e-01, 4.8375e-01, 8.1165e-01, -4.3111e-01,
1.2101e+00, -7.1869e-01, -9.3713e-01, 8.0531e-01, -1.0737e+00,
-8.2951e-02, 9.9555e-01, 5.7983e-01, 6.4511e-02, -1.5688e-01,
-7.8642e-01, 2.1101e-01, 3.5995e-01, -1.1792e+00, 2.7492e-01,
-1.1338e+00, 1.4390e+00, 7.4970e-01, 4.1525e-01, -2.2618e-01,
-5.6868e-01, -1.0587e+00, -8.4871e-01, 4.2294e-01, -7.5937e-01,
1.2478e+00, 3.1876e-01, 5.4925e-02, -4.2920e-01, 2.9908e-02,
-7.2298e-01, -5.0745e-01, -1.0847e-01, -3.3263e-01, 3.8415e-01,
-3.0520e-01, -7.3637e-01, 3.7017e-01, 2.0959e-01, -3.9341e-01,
9.2597e-02, -7.0634e-01, -5.4246e-01, -5.9055e-01, 1.0688e-01,
-5.5952e-01, 1.4558e+00, -7.3014e-01, -4.1277e-01, 1.1603e+00,
-2.9320e-01, -1.1457e+00, 7.0188e-01, -7.2187e-01, 4.9911e-01,
-1.7366e-01, 7.8894e-01, -6.5754e-01, -6.5171e-01, 2.3485e-01,
2.2758e-01, 1.1867e+00, 4.1541e-01, 8.7716e-02, 5.4310e-01,
-3.5418e-01, -2.2289e-01, 5.3745e-01, 4.9035e-01, -1.5985e-01,
1.4329e-02, 1.1308e+00, -9.6263e-01, 2.2490e-01, 1.6313e-01,
5.1836e-01, 2.7269e-01, 1.3424e-01, -3.2040e-01, 1.7400e-01,
-6.9929e-01, -7.7752e-01, -6.4446e-01, 2.9672e-01, -1.3011e-02,
-4.6553e-01, 5.0777e-01, -2.2849e-01, -3.6042e-01, 1.3338e+00,
1.6765e-01, -9.3721e-01, 5.1379e-01, 2.6106e-01, 7.9202e-01,
7.5039e-01, -7.1235e-02, -5.7395e-03, -5.5282e-01, 7.3725e-01,
5.6211e-01, -6.3226e-01, -4.4917e-02, 4.0115e-01, 3.1123e-01,
-8.5666e-01, -1.1569e+00, 3.8246e-01, -4.3587e-01, -1.1493e+00,
-3.8287e-01, 3.4385e-01, -7.5745e-01, -2.5882e-01, -2.8164e-01,
-1.1965e-02, 2.1589e-01, -4.3658e-01, -1.3746e-01, 9.7378e-01,
-1.0517e+00, -4.0558e-01, -1.0544e-02, -6.4660e-02, -5.1592e-01,
4.5318e-01, 1.3184e+00, 3.7338e-01, 3.4490e-02, 1.4038e+00,
-1.6802e-01, 2.3007e-02, 4.4980e-03, 1.2705e-01, 2.7906e-01,
-8.4902e-01, -3.8745e-01, 3.1278e-01, -8.8074e-01, -4.7914e-01,
7.2190e-02, -6.4725e-01, -2.0902e-01, 1.2280e-01, -1.8186e-01,
1.0589e-01, -6.0947e-01, -2.8543e-01, -1.0723e+00, -1.7837e-01,
1.4746e+00, 1.1301e+00, 8.8037e-01, -3.8367e-01, 6.1571e-01,
5.8543e-02, 5.3181e-01, -2.4058e-01, 6.9641e-01, 5.4891e-01,
4.8759e-03, -1.2818e+00, 7.0707e-01, 4.6681e-01, -2.3600e-01,
-2.7093e-01, 2.1033e-01, -3.7307e-01, 2.2353e-01, -1.5244e-01,
2.1925e-02, -2.3214e-01, 2.5308e-02, 7.7142e-01, 6.8966e-01,
5.5418e-01, -3.1878e-01, -8.5453e-01, 5.2859e-01, 7.1266e-01,
3.4018e-01, 2.4858e-01, -7.1972e-01, 1.2186e+00, -8.9309e-01,
3.7593e-01, 9.3331e-01, 1.6154e+00, 3.6179e-01, 9.8585e-01,
5.0944e-01, 3.2588e-01, -2.8218e-01, -7.9708e-02, 5.0813e-01,
7.1221e-01, 3.9624e-01, 6.6906e-01, -1.6557e-01, -4.3672e-01,
-4.2653e-01, 7.3462e-01, -8.6661e-02, 6.1583e-01, 1.1201e+00,
-1.3712e+00, 7.1885e-01, -9.1739e-02, 4.3945e-01, 1.1710e+00,
-2.2104e-01, 2.4807e-01, 2.9516e-01, -1.0306e+00, 1.2226e+00,
-2.5720e-01, -2.0021e-01, -6.3561e-01, 7.7526e-01, -1.3281e-01,
4.2105e-01, -9.8721e-01, 6.0226e-02, -7.4250e-01, -1.1144e-01,
2.1858e-01, 1.0423e+00, -2.9606e-01, 1.8390e-01, 3.6015e-01,
-3.9900e-03, 8.7758e-02, 1.1577e-01, 1.1973e+00, 3.1103e-01,
-4.2398e-01, 3.0271e-01, -2.8444e-01, 5.1662e-01, -1.3356e+00,
5.8137e-01, -5.7901e-01, 6.6809e-01, 5.4561e-01, 7.4738e-01,
-9.4391e-03, -2.7110e-01, 6.9678e-02, -3.0574e-01, 4.4471e-01,
-6.3125e-02, 4.8383e-01, -4.3376e-01, 9.3516e-01, -1.0835e+00,
3.9941e-01, 7.5706e-01, -3.8424e-02, -1.5844e-01, 6.9874e-01,
-2.2643e-01, -8.1118e-01, 3.4155e-01, 6.2197e-01, -4.5426e-01,
-1.1235e-01, -2.8171e-01, -4.2020e-01, 5.8910e-03, -2.1005e-01,
9.5020e-01, -5.1491e-01, -5.2156e-01, -3.6768e-01, -3.3160e-01,
-8.8831e-01, 1.6263e-01, -1.2790e+00, -2.2097e-01, 6.3435e-01,
3.3925e-01, 5.1287e-01, 3.0567e-02, 1.4348e-01, -3.5183e-01,
-4.7715e-01, -5.9157e-01, -5.3332e-01, -1.2875e-01, -6.4399e-01,
1.2068e+00, -4.3453e-01, 3.6951e-01, -3.7221e-01, 1.0549e+00,
-7.8913e-01, -7.2606e-01, 1.7644e+00, -7.1351e-01, -4.7304e-01,
9.7223e-01, -7.1468e-01, 1.0018e-01, 6.0553e-01, 1.4333e-01,
3.6390e-01, -5.6337e-02, 3.2207e-01, 5.4261e-01, -4.5484e-01,
-9.2550e-02, -1.0209e-01, -5.5761e-01, -8.3987e-02, 6.7479e-01,
7.3383e-01, 3.2637e-01, 2.2839e-01, 7.3619e-01, 4.5373e-02,
1.4767e+00, 1.1286e+00, 1.0320e-01, 6.0987e-03, 1.8241e-02,
-4.1522e-01, 1.4877e+00, -9.9928e-02, 1.1028e+00, 1.8680e-01,
9.3361e-01, 1.1641e-03, -6.7221e-01, -1.1105e+00, -4.5087e-01,
-1.9451e-01, 5.3225e-01, -7.0291e-02, 2.6069e-01, 3.2638e-01,
-9.7803e-01, 2.5177e-01, -5.2165e-02, 3.2999e-01, 7.0848e-01,
-4.7834e-01, 1.2501e+00, -3.3023e-01, -9.7759e-01, 6.8180e-01,
-6.7149e-01, 1.3792e+00, -3.1857e-01, -9.0531e-01, 4.8713e-01,
-1.1678e-01, -5.3198e-01, -8.2755e-01, -6.2357e-01, -7.8093e-01,
-1.9248e-01, 2.3543e-01, -3.6204e-01, -3.1342e-01, -1.2192e+00,
5.2952e-01, 2.6511e-01, 1.4131e+00, -9.5214e-02, -7.0332e-01,
-1.9167e-01, 8.7300e-01, -3.5202e-01, 8.1680e-01, -1.1795e+00,
-4.6051e-01, -7.1857e-01, -1.1671e-01, -3.5521e-01, 3.9610e-01,
6.4604e-01, 2.4028e-01, 2.4551e-01, 3.8291e-01, 3.6420e-01,
-6.4876e-01, -1.0353e-01, -3.0709e-01, 5.1353e-01, 5.7663e-01,
2.8187e-01, 3.8347e-01, -3.2358e-01, 2.4605e-01, -5.6711e-01,
7.2537e-01, 9.1548e-01, 8.8802e-01, 6.2908e-01, 3.6824e-01,
-1.1807e-01, -6.2132e-01, -2.2127e-01, 7.0661e-01, -3.4173e-01,
3.7389e-02, 6.3347e-02, -1.5815e-01, -5.4016e-02, 6.1224e-01,
-1.1764e-01, -6.6400e-01, -6.9328e-01, 1.1396e-01, 2.9845e-01,
1.1607e+00, -3.9230e-01, 6.9676e-01, 3.7753e-01, -4.5834e-01,
3.5393e-01, -1.9701e-01, -4.0007e-02, 1.6460e+00, 1.0020e+00,
2.7125e-01, 5.4337e-01, 9.6963e-01, 3.7202e-01, 1.3688e-01,
5.5945e-01, -6.7389e-01, 4.1863e-01, 9.1551e-01, -1.4212e-01,
-8.4382e-01, 6.4143e-01, -2.8692e-01, -8.3050e-01, 5.6636e-01,
3.8771e-01, 6.7161e-01, 7.1014e-01, 8.8337e-01, -6.5802e-01,
-1.9257e-01, -8.7510e-01, -8.5440e-01, -1.0751e+00, -3.9010e-01,
9.7424e-01, -1.0402e-01, 5.7751e-01, 2.9744e-01, 7.4402e-01,
1.5031e-01, 2.2013e-01, -2.3053e-01, -4.6259e-01, 2.5106e-01,
-1.0140e+00, 8.0855e-01, -1.1636e-01, -7.8362e-02, -9.2715e-02,
-1.0271e+00, 2.9693e-01, -2.0904e-01, -5.0984e-01, 1.3045e+00,
4.8532e-01, 1.4346e-01, 7.6788e-01, 9.7047e-01, 4.0762e-01,
2.3484e-01, 3.1950e-01, -2.3318e-01, -6.8306e-03, 5.6380e-01,
-9.6460e-02, -2.8250e-01, 1.1092e+00, -3.1063e-02, -2.1305e-01,
6.3479e-01, 2.1984e-01, -1.1693e+00, 4.7175e-01, -1.3506e-01,
1.1924e-01, 4.1394e-01, -1.2817e+00, -2.7704e-01, 1.0168e+00,
2.1124e-01, 6.1006e-02, -2.0014e-01, 1.4460e+00, 3.5466e-01,
3.7454e-01, -1.2640e-02, 6.0403e-03, 3.2332e-01, 8.9131e-01,
4.5607e-02, -6.6399e-02, -2.0708e+00, 3.2648e-01, 7.6369e-01,
4.1520e-01, -2.7174e-01, -5.1358e-01, 9.6802e-01, 3.8855e-01,
6.7598e-01, 3.1721e-01, 2.0969e-01, -1.3217e-01, 7.5170e-01,
-1.0165e+00, 4.6450e-01, 3.1623e-01, -1.2664e-01, -5.8193e-01,
7.5702e-01, 2.1583e-01, 8.0843e-01, 8.0445e-01, -6.3687e-01,
-2.1509e-01, 1.3130e-01, -4.3707e-01, -3.1932e-01, 2.4451e-01,
1.8980e-01, 1.7880e-01, 5.7971e-01, -9.6651e-01, 4.5083e-01,
5.5928e-01, 3.5459e-01, 1.1491e-01, 1.0462e+00, -1.2330e-01,
-2.5296e-01, 2.2241e-02, 1.1558e+00, -5.2790e-01, -5.4470e-01,
6.7174e-01, -6.3254e-01, 1.0079e-01, -5.7307e-01, -5.3185e-01,
1.3242e+00, -4.9839e-01, -5.1236e-03, -1.1210e+00, 1.0798e+00,
7.2417e-02, -4.2987e-01, 1.2662e+00, 6.0314e-01, -9.2942e-02,
9.2841e-01, -1.3543e-01, -3.3278e-01, 6.6304e-01, -4.1726e-01,
-3.8710e-02, 6.5126e-01, -7.1032e-02, 3.6333e-01, 8.8658e-02,
5.5386e-01, -1.1523e+00, -4.8741e-01, -3.0395e-01, -7.6689e-01,
1.0167e+00, 2.8526e-01, 4.7810e-01, 1.0492e-01, 3.2575e-01,
-8.6603e-01, 8.0494e-01, 6.8050e-01, 1.5820e-01, -1.0125e-01,
-9.4131e-02, -8.0925e-01, 9.6557e-01, -3.8323e-04, -5.9713e-01,
-4.7461e-01, 2.8437e-01, -7.0949e-02, -6.6371e-01, 5.8345e-01,
-1.9877e-01, -1.0992e+00, -6.4899e-01, 7.9953e-01, 4.7137e-01,
1.0099e+00, 6.3704e-01, 2.3527e-01, 2.2146e-01, -1.3238e-01,
-4.7322e-01, 1.1008e+00, 4.1789e-01, -2.6206e-01, -2.6280e-01,
-1.3215e-01, -7.2749e-01, 8.8819e-02, 8.2486e-01, 9.9206e-01]],
grad_fn=<AddmmBackward>)
tensor([[ 0.8583, 0.2219, 0.0908, -0.3688, 1.1560, 0.7270, -0.1212, -0.3032,
-0.1714, -0.0670, -1.0323, 0.0047, -1.0780, -0.8921, -1.3603, -0.1051,
-0.7071, 0.1529, 0.4977, 0.6891, -0.3599, 0.1205, -0.0934, 0.2150,
1.1170, -0.3915, 0.2290, -0.2707, 0.2720, -0.8762, -0.7861, 0.0707,
-0.3628, -0.3093, -0.5939, -0.2183, -0.0052, 0.8033, -1.1063, -0.6420,
0.1120, 0.3753, -0.4286, -0.6054, -0.1547, -0.4218, 0.3286, -0.2107,
-0.4165, -0.0471, 0.0936, -0.8109, -0.2143, -1.0776, 0.7402, -0.2014,
0.5503, -1.1897, 0.1982, 0.3422, -0.2176, -0.3140, -1.1125, 0.5685,
-0.2621, -0.0292, -0.0085, 0.8044, -0.2474, 0.0391, -0.3945, -0.3764,
1.2721, 0.0749, 0.2646, 0.0626, 0.2451, -1.3575, 0.6655, 0.0903,
-0.1422, 0.3071, 0.9701, 0.4616, 0.8723, -1.8646, 0.0220, 1.1814,
-0.9941, 1.6733, -0.0821, -0.4536, -0.0352, -0.6677, -0.1204, 1.2320,
1.1207, 0.4285, -0.4761, 0.3149, 0.2277, -0.1647, -0.4141, 0.3424,
-1.0660, 0.0641, 0.0542, -0.3486, 0.3432, 0.0687, -0.1604, -0.5909,
-1.1305, 0.3894, -0.1907, -0.7874, -0.5636, -0.4908, 0.3239, 0.3048,
0.6679, 0.7988, -0.8538, -0.2247, 0.3454, -0.9895, 0.9839, -0.4592,
-0.3357, -1.3587, 0.7747, 0.2871, -0.3907, 0.2034, 0.1411, -0.5172,
1.5404, 0.5140, -1.2516, -0.1875, -0.1076, -1.9001, 0.2219, -0.1132,
0.2477, -0.1683, 0.9590, -0.3854, -0.2032, -0.3209, -0.6780, 0.0069,
0.8684, -0.6738, -0.3045, 0.7861, 0.1697, 0.3226, -0.7716, -0.0477,
0.0432, -0.5059, 0.2730, -0.6356, 1.0412, -0.2633, -0.9977, -0.3650,
0.3670, -0.6272, -0.1175, 1.1047, 0.7568, -0.0852, -0.3786, 1.2422,
-0.5950, -0.2451, 0.5207, -0.0848, 0.0894, -0.0162, -0.4142, -0.0570,
0.1677, 0.4498, -0.8081, -0.1912, 0.4066, -0.1794, -0.1089, 0.7038,
-1.1204, 1.4453, -0.5261, -0.2537, 0.2954, 0.0537, 1.1032, -1.6995,
-0.8658, 0.0069, -0.7864, -0.5945, 0.3836, -0.8819, -0.7932, 0.7809,
-0.5035, 0.1249, -0.7372, -0.0023, 0.1401, 1.6874, -0.5839, 0.0617,
-0.3735, 0.1255, 0.8500, 0.1772, -0.2503, -0.9388, 0.4660, 0.0778,
-0.2575, 0.9906, -0.6868, -0.1666, 1.5679, -0.1536, -0.6431, 0.2470,
-0.6598, -0.3674, 1.2074, -0.5786, -1.2000, 0.5436, -0.9324, -0.1678,
0.2622, 0.2365, -1.1233, -0.0316, 0.4280, -0.6036, -0.1521, 0.8521,
-1.2506, 0.0447, -0.2429, -0.5794, 0.2477, -0.2386, -0.4713, -0.8464,
-0.6100, 0.0416, -0.9101, 0.4154, -1.1316, -0.3032, 0.2720, 0.0818,
-0.1726, 0.6396, 0.2227, -0.6746, 1.4707, 0.2891, 0.4319, 1.3665,
-1.0922, 0.2068, 0.2742, 0.5250, 0.6502, -0.8084, -0.5297, -0.3780,
-0.3048, 0.3210, -0.4358, 0.7772, -0.4798, -0.2714, -0.4301, -0.1023,
-0.8924, -0.4756, -0.9159, -0.6420, 0.2500, 0.6301, -0.3656, -0.3115,
-0.3092, -0.6765, 0.2568, -0.1190, -0.3246, -0.7433, 1.3411, 0.2621,
0.6059, -1.6666, 0.5171, 0.9830, 0.4238, 0.9399, -0.2219, 0.1042,
0.6885, -0.1398, 1.0048, 0.8237, 0.5311, 0.2481, -1.1185, -0.3169,
-0.4606, 0.2594, 0.5915, -0.0420, 0.0353, 0.5132, -0.1115, 0.1641,
0.6328, 0.0220, -0.1134, 0.3487, 0.7037, 0.1949, 0.9965, -0.3493,
-0.1531, 0.3266, 0.3365, -0.9098, 0.6647, -0.4036, 0.6309, 0.2539,
-0.6655, 0.2219, 1.3017, -0.2910, 0.0077, -0.1615, -0.0499, -1.0351,
0.0631, 0.0526, -0.2282, 0.7903, -0.2692, -0.8018, 0.0425, -0.6413,
-0.7523, -1.5698, -0.5256, -0.3538, 1.2565, 1.2090, 0.0132, -0.8184,
1.1792, -0.4623, -0.1368, -0.1340, -0.4158, -0.3891, -0.6368, -0.6716,
0.1764, -0.6001, 0.3692, 0.1826, 0.3553, -0.4659, -0.0166, -0.2227,
0.0605, -0.1283, 0.4476, -0.2427, 0.7576, 0.8014, -0.1844, 0.4134,
-0.3707, -0.5320, -0.2180, -0.7385, 0.5511, -1.1440, 0.7495, -0.1902,
0.1369, 0.2095, -0.4616, -0.2702, -0.6023, -0.1063, -0.1010, 0.4664,
-0.4199, 0.6815, 0.1581, 0.1553, -0.3236, -0.3660, -0.0891, -0.0942,
-0.8452, -1.1930, -0.7743, -0.8862, -0.5736, -0.9316, -0.1222, -0.4710,
-0.4420, -0.5289, -0.7370, -0.4200, 0.8102, 0.1068, 0.6879, 0.9414,
-1.0126, -0.6519, 0.4527, 0.3266, 0.4081, 0.1996, -0.0257, 0.1841,
-0.4881, -0.8573, 0.5010, -0.4788, -0.6908, 0.3824, -0.2642, -0.6462,
0.2921, 0.8192, 0.6443, 0.5318, 0.8571, 0.5193, -0.0748, -0.0666,
0.2659, 0.2960, -0.2691, -1.3030, -0.7433, 0.2877, -0.6012, -0.6165,
-0.1664, -0.4276, 0.7057, -0.4753, 0.9193, -0.0858, 0.4529, 0.0187,
0.5288, -0.0120, -0.2770, 0.4051, 0.0486, -0.2863, 0.7978, -0.1046,
0.5071, -0.2378, 0.0393, -0.4039, 1.1442, -0.6032, 0.6462, 0.2437,
0.6592, -0.1853, -0.3932, 0.1069, -0.3172, 0.0439, -0.0894, -0.7581,
0.8185, -0.6686, -0.7607, -0.0244, 0.0612, -0.3434, 0.4846, 0.3707,
-0.1968, 0.7238, 0.0380, -0.1852, -0.0509, 0.0693, -0.2527, -0.7352,
-0.6229, 0.4219, -0.8397, 0.0265, 0.6799, 0.2732, 0.8133, 0.5658,
0.4521, 0.2094, -0.1233, 0.2853, -0.4095, -0.0043, 0.0443, -0.1329,
0.1748, -0.3173, 0.4919, -0.2481, -0.4752, -0.3148, -0.4381, -0.8508,
0.4462, 0.6670, 0.3655, 2.1904, 0.3760, -0.1575, -0.4121, -0.8432,
0.2034, 0.7576, 0.4390, 0.1646, 0.1873, -0.3555, 0.8141, -1.1400,
-0.9080, 0.8897, 1.0261, -0.0397, 0.0434, -0.5660, 0.4741, 0.0463,
0.6119, -0.7441, -0.1215, -0.3012, 0.5099, -1.2163, -0.3103, -0.4813,
-0.3444, 0.2921, -0.9768, 0.4538, 0.6191, 0.8799, -0.3835, -0.0057,
0.2141, 0.0442, -0.3738, 0.4000, -0.9016, 0.0222, 1.1992, 0.7037,
-0.2133, 0.1393, 1.4536, -0.3438, 0.6417, 0.1219, 0.4277, -0.1041,
0.1900, 0.0222, -0.2329, -0.0655, 0.3298, -0.8072, 0.1152, -0.0886,
-0.0550, -0.1536, -0.0492, -0.2500, -0.2076, -0.3855, 0.8968, 0.2879,
0.5730, 0.1542, -0.6952, 0.6044, -0.0396, 0.6409, 1.0697, -0.5936,
-1.0671, -0.1631, -0.0559, -0.6267, -0.1045, 0.4992, -1.1814, -0.3745,
0.1148, 1.2093, 0.6348, -0.0950, 0.6317, 0.3497, 0.9094, 0.2639,
0.2698, -0.5232, 0.2271, -0.1841, -1.1478, 0.1940, 0.1754, 0.5913,
-0.1162, -0.2418, 0.2757, 0.5607, -0.3401, -0.2242, -0.5553, 0.7191,
1.1865, 0.4946, -0.0032, -0.3131, 0.4494, 0.2746, -0.0319, -0.8218,
-0.1342, 0.2442, -0.5747, -0.1053, 0.5896, -0.8873, -0.6665, 0.5551,
0.0782, 0.3987, 0.3041, 0.6591, -0.1150, -1.2871, 0.3905, 0.1369,
-0.7377, 0.9123, -0.2117, 0.4595, 0.6514, 0.4681, -0.2784, 0.0099,
-0.4514, -0.3678, -0.2100, 0.5424, 0.7370, -0.5189, 0.2916, 0.0367,
0.7997, 0.2482, -1.2903, 0.3780, 0.6159, -0.1243, -0.6554, 0.9334,
0.2720, -0.3412, 0.5984, -0.8122, -0.6410, 0.4535, 0.1734, -0.3975,
-0.8048, 0.4323, 0.4416, -0.0587, 0.3416, 0.5949, 0.9841, 0.6708,
-0.4209, -0.2902, 0.4471, -0.6019, -0.3284, 0.7052, -0.3894, 0.2325,
-0.1371, -0.0458, 0.2366, 0.6565, -0.6877, -0.4468, -0.0416, 0.1399,
0.3912, -0.5745, -0.5798, 0.3441, 0.4783, 0.6710, 1.5530, -0.2175,
0.2798, 0.7343, 0.2631, -0.1522, -0.0929, -0.7242, -0.1866, 0.4094,
0.9072, 0.7748, -0.9727, 0.2121, 0.6975, 0.5502, -1.5739, -0.1935,
0.2408, -0.9197, 0.8733, 0.1751, -1.6064, -0.8624, 0.3407, 0.1941,
0.2186, 1.0303, 0.9977, 0.9978, 0.5819, 0.3241, -0.0397, -0.0729,
-0.2124, 0.6568, 0.3392, 0.5155, -0.0025, -1.6329, 0.0523, 0.0961,
-1.1520, 0.9825, -0.1009, 0.3857, -0.6765, 0.2406, 0.7285, -0.1881,
0.3678, 0.4719, -0.5791, 0.2218, 0.6020, 0.3131, 0.2334, -0.5597,
0.7021, 0.0916, -0.0537, -1.1107, -1.3456, 0.1169, 0.2511, 0.0659,
0.3046, -0.7241, -0.0933, 0.8756, -1.0751, 0.0476, 0.7796, 0.3287,
0.5448, -0.9035, 0.5777, -0.7859, 0.4341, 1.1255, 0.4447, 0.2046,
0.6836, 0.7843, 0.9051, 0.4812, 0.2248, -0.3002, -0.2056, 0.0062,
0.6319, -0.6192, 0.1192, 0.6877, -0.1505, -0.5901, 1.1053, -0.4244,
1.2949, -0.0225, -0.7752, 0.4802, -0.8232, 0.6852, -0.3668, 0.5570,
0.6362, 0.1484, -0.1976, 0.1145, 0.4329, -0.3728, -0.0098, -0.1347,
-0.1296, -0.8788, -0.9397, -0.9967, 0.3410, -0.5902, 0.2272, 0.4113,
0.5386, -0.0544, -0.4600, -0.4375, -0.4247, -0.0638, -0.3998, -0.8774,
-0.0317, 0.4021, -0.8222, -0.4809, -1.1616, 0.8198, -0.0503, 0.5451,
-0.4983, 0.1550, -0.8350, -0.2284, 0.8163, 0.3057, -0.1393, -0.8876,
-0.1237, 0.0322, 0.0652, 0.0870, -1.2977, -0.2600, 0.3764, 0.2252,
-0.4700, 0.8265, -0.3017, -0.7971, -0.6706, 0.1718, 0.0871, -1.4964,
-0.5555, 0.2503, -0.5699, -0.6307, -0.1777, 0.0038, -1.1909, -0.9936,
0.8798, 0.3346, -0.5728, -1.2314, -0.4099, 0.3378, 0.7328, -0.1436,
-0.1719, 0.0340, -1.2943, -0.0104, 1.0345, 0.2331, 0.0599, 0.6879,
-0.7434, -0.5223, 0.2352, -0.9593, 0.0825, -0.5867, 0.5346, 0.7509,
0.8674, -0.9182, 0.3365, 0.1850, -1.1668, -1.2389, -0.3753, -0.1050,
-0.0569, 0.1062, 0.7333, 0.0465, 1.0837, 0.6633, -1.7137, -0.5974,
0.4209, -0.3124, 0.3935, 0.5566, -0.0534, -0.1313, -0.4815, 0.7935,
0.3970, -1.2496, -0.3091, -1.0784, 0.4957, 0.4002, 0.3540, -1.6088,
-0.6770, 0.7959, -0.7764, 0.7647, 0.2016, 0.3960, 0.1153, 0.3679,
0.4652, -0.1590, -0.3743, -0.0253, -0.1515, -0.7036, -0.8022, -0.2377,
-0.4536, 0.2447, 0.2165, 0.0511, -1.0900, -0.3818, -0.9283, 0.4730,
0.4143, 0.0216, 0.1163, -0.1247, 0.2278, -0.6479, -0.5509, 0.5441,
0.2503, -0.0678, 0.8512, 0.3365, -0.5701, 0.1218, 0.2744, -0.7122]],
grad_fn=<AddmmBackward>)
Process finished with exit code 0
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80.
- 81.
- 82.
- 83.
- 84.
- 85.
- 86.
- 87.
- 88.
- 89.
- 90.
- 91.
- 92.
- 93.
- 94.
- 95.
- 96.
- 97.
- 98.
- 99.
- 100.
- 101.
- 102.
- 103.
- 104.
- 105.
- 106.
- 107.
- 108.
- 109.
- 110.
- 111.
- 112.
- 113.
- 114.
- 115.
- 116.
- 117.
- 118.
- 119.
- 120.
- 121.
- 122.
- 123.
- 124.
- 125.
- 126.
- 127.
- 128.
- 129.
- 130.
- 131.
- 132.
- 133.
- 134.
- 135.
- 136.
- 137.
- 138.
- 139.
- 140.
- 141.
- 142.
- 143.
- 144.
- 145.
- 146.
- 147.
- 148.
- 149.
- 150.
- 151.
- 152.
- 153.
- 154.
- 155.
- 156.
- 157.
- 158.
- 159.
- 160.
- 161.
- 162.
- 163.
- 164.
- 165.
- 166.
- 167.
- 168.
- 169.
- 170.
- 171.
- 172.
- 173.
- 174.
- 175.
- 176.
- 177.
- 178.
- 179.
- 180.
- 181.
- 182.
- 183.
- 184.
- 185.
- 186.
- 187.
- 188.
- 189.
- 190.
- 191.
- 192.
- 193.
- 194.
- 195.
- 196.
- 197.
- 198.
- 199.
- 200.
- 201.
- 202.
- 203.
- 204.
- 205.
- 206.
- 207.
- 208.
- 209.
- 210.
- 211.
- 212.
- 213.
- 214.
- 215.
- 216.
- 217.
- 218.
- 219.
- 220.
- 221.
- 222.
- 223.
- 224.
- 225.
- 226.
- 227.
- 228.
- 229.
- 230.
- 231.
- 232.
- 233.
- 234.
- 235.
- 236.
- 237.
- 238.
- 239.
- 240.
- 241.
- 242.
- 243.
- 244.
- 245.
- 246.
- 247.
- 248.
- 249.
- 250.
- 251.
- 252.
- 253.
- 254.
- 255.
- 256.
- 257.
- 258.
- 259.
- 260.
- 261.
- 262.
- 263.
- 264.
- 265.
- 266.
- 267.
- 268.
- 269.
- 270.
- 271.
- 272.
- 273.
- 274.
- 275.
- 276.
- 277.
- 278.
- 279.
- 280.
- 281.
- 282.
- 283.
- 284.
- 285.
- 286.
- 287.
- 288.
- 289.
- 290.
- 291.
- 292.
- 293.
- 294.
- 295.
- 296.
- 297.
- 298.
- 299.
- 300.
- 301.
- 302.
- 303.
- 304.
- 305.
- 306.
- 307.
- 308.
- 309.
- 310.
- 311.
- 312.
- 313.
- 314.
- 315.
- 316.
- 317.
- 318.
- 319.
- 320.
- 321.
- 322.
- 323.
- 324.
- 325.
- 326.
- 327.
- 328.
- 329.
- 330.
View Code
author : Your Rego
The copyright of this article belongs to the author , Welcome to reprint , But without the author's consent, the original link must be given on the article page , Otherwise, the right to pursue legal responsibility is reserved .
边栏推荐
猜你喜欢
![[PCL self study: pclvisualizer] point cloud visualization tool pclvisualizer](/img/38/c7ce908bfcc5cc5cd5856996aa015b.png)
[PCL self study: pclvisualizer] point cloud visualization tool pclvisualizer

ASP.NET仓库进销存ERP管理系统源码 ERP小程序源码

零基础自学SQL课程 | IF函数

Cornernet由浅入深理解

C language character pointer and string initialization

零基础自学SQL课程 | SQL中的日期函数大全

MSP430F5529 单片机 读取 GY-906 红外温度传感器

Zero foundation self-study SQL course | complete collection of SQL basic functions

Usage of vivado vio IP

What if Fiddler fails to listen to the interface
随机推荐
Online JSON to plaintext tool
How to use the apipost script - global variables
The file or assembly 'cefsharp.core.runtime.dll' or one of its dependencies could not be loaded. Is not a valid Win32 Application. (exception from hresult:0x800700c1)
Chapter 2 integrated mp
C# Winform 读取Resources图片
零基础自学SQL课程 | SQL基本函数大全
vivado 如何添加时序约束
MySQL character set
Prediction of benign / malignant breast tumors (logistic regression classifier)
MySQL read / write separation configuration
At the beginning of reading English literature, I would like to ask you how you should read it in the first place?
撰写外文时怎样引用中文文献?
c语言-日期格式化[通俗易懂]
使用cef3开发的浏览器不支持flash问题的解决
通过中金证券经理的开户二维码开股票账户安全吗?还是去证券公司开户安全?
第 2 章 集成 MP
[sword finger offer] 48 Longest substring without duplicate characters
halcon之区域:多种区域(Region)特征(6)
手把手教你移植 tinyriscv 到FPGA上
Golang uses Mongo driver operation -- Query (array related)