当前位置:网站首页>Anaconda installation +tensorflow installation +keras installation +numpy installation (including image and version information compatibility issues)

Anaconda installation +tensorflow installation +keras installation +numpy installation (including image and version information compatibility issues)

2022-06-25 04:27:00 Life is sweet and good luck is good

install Anaconda

Anaconda Various versions of the installation package ( Official website )( According to the corresponding Python Version found required Anaconda Download the version installation package )

install Anaconda Check all the boxes , Direct fool mounting .( Pay attention to the installation address , The address should not contain Chinese )

Images to add :

https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2

tensorflow and numpy Corresponding version

tensorflownumpycudacudnn
2.0.01.16.4  
1.14.01.16.010.07.6.5
1.13.11.16.0  
1.12.01.15.4  
1.8.01.14.5 

change numpy Version method :

pip install -U -i https://pypi.tuna.tsinghua.edu.cn/simple numpy== edition 
# -U  It's a reload 
# -i https://pypi.tuna.tsinghua.edu.cn/simple  Is to use Tsinghua mirror 

Or use another image ( This image is faster )

http://pypi.douban.com/simple --trusted-host pypi.douban.com

 1. open Anaconda Prompt, Check Anaconda Is the installation successful :conda --version

 2. Check which environments are currently installed :conda info --envs

 4. Install different versions of python:conda create -n tensorflow python=3.6.5

Video installation tutorial used :Anaconda、Tensorflow、keras Possible installation problems and solutions / Experience sharing

The commands used in the tutorial :Anaconda Prompt

1.(base) Environmental Science 
python -m pip install -U pip
// The correct result is :Successfully...
2.(base) Environmental Science 
// Create a tensorflow Environment , At the same time to install python
conda create --name tensorflow python=3.6
3.(base)
activate tensorflow
4.(tensorflow)
pip install tensorflow==1.15.0 -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
5.(tensorflow)
// Check tensorflow Is the installation successful 
python
import tensorflow as tf
// When the installation time appears, the installation is successful 
6.(tensorflow)
pip install keras==2.2.5 -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
7.(tensorflow)
// Check keras Is the installation successful 
python
import keras
// If the installation is successful, it will display Using TensofFlow backend

 

my Anaconda edition :Anaconda3-5.2.0

Python edition :3.6.1.2

keras edition :2.3.1

numpy edition :1.16.0

tensorflow edition :1.15.0

How to view the installed tensorflow Version of :

TensorFlow And Keras as well as Python Version one-to-one correspondence table

FrameworkEnv name (--env parameter)Description
TensorFlow 2.2tensorflow-2.2TensorFlow 2.2.0 + Keras 2.3.1 on Python 3.7.
TensorFlow 2.1tensorflow-2.1TensorFlow 2.1.0 + Keras 2.3.1 on Python 3.6.
TensorFlow 2.0tensorflow-2.0TensorFlow 2.0.0 + Keras 2.3.1 on Python 3.6.
TensorFlow 1.15tensorflow-1.15TensorFlow 1.15.0 + Keras 2.3.1 on Python 3.6.
TensorFlow 1.14tensorflow-1.14TensorFlow 1.14.0 + Keras 2.2.5 on Python 3.6.
TensorFlow 1.13tensorflow-1.13TensorFlow 1.13.0 + Keras 2.2.4 on Python 3.6.
TensorFlow 1.12tensorflow-1.12TensorFlow 1.12.0 + Keras 2.2.4 on Python 3.6.
 tensorflow-1.12:py2TensorFlow 1.12.0 + Keras 2.2.4 on Python 2.
TensorFlow 1.11tensorflow-1.11TensorFlow 1.11.0 + Keras 2.2.4 on Python 3.6.
 tensorflow-1.11:py2TensorFlow 1.11.0 + Keras 2.2.4 on Python 2.
TensorFlow 1.10tensorflow-1.10TensorFlow 1.10.0 + Keras 2.2.0 on Python 3.6.
 tensorflow-1.10:py2TensorFlow 1.10.0 + Keras 2.2.0 on Python 2.
TensorFlow 1.9tensorflow-1.9TensorFlow 1.9.0 + Keras 2.2.0 on Python 3.6.
 tensorflow-1.9:py2TensorFlow 1.9.0 + Keras 2.2.0 on Python 2.
TensorFlow 1.8tensorflow-1.8TensorFlow 1.8.0 + Keras 2.1.6 on Python 3.6.
 tensorflow-1.8:py2TensorFlow 1.8.0 + Keras 2.1.6 on Python 2.
TensorFlow 1.7tensorflow-1.7TensorFlow 1.7.0 + Keras 2.1.6 on Python 3.6.
 tensorflow-1.7:py2TensorFlow 1.7.0 + Keras 2.1.6 on Python 2.
TensorFlow 1.5tensorflow-1.5TensorFlow 1.5.0 + Keras 2.1.6 on Python 3.6.
 tensorflow-1.5:py2TensorFlow 1.5.0 + Keras 2.1.6 on Python 2.
TensorFlow 1.4tensorflow-1.4TensorFlow 1.4.0 + Keras 2.0.8 on Python 3.6.
 tensorflow-1.4:py2TensorFlow 1.4.0 + Keras 2.0.8 on Python 2.
TensorFlow 1.3tensorflow-1.3TensorFlow 1.3.0 + Keras 2.0.6 on Python 3.6.
 tensorflow-1.3:py2TensorFlow 1.3.0 + Keras 2.0.6 on Python 2.
TensorFlow 1.2tensorflow-1.2TensorFlow 1.2.0 + Keras 2.0.6 on Python 3.5.
 tensorflow-1.2:py2TensorFlow 1.2.0 + Keras 2.0.6 on Python 2.
TensorFlow 1.1tensorflowTensorFlow 1.1.0 + Keras 2.0.6 on Python 3.5.
 tensorflow:py2TensorFlow 1.1.0 + Keras 2.0.6 on Python 2.
TensorFlow 1.0tensorflow-1.0TensorFlow 1.0.0 + Keras 2.0.6 on Python 3.5.
 tensorflow-1.0:py2TensorFlow 1.0.0 + Keras 2.0.6 on Python 2.
TensorFlow 0.12tensorflow-0.12TensorFlow 0.12.1 + Keras 1.2.2 on Python 3.5.
 tensorflow-0.12:py2TensorFlow 0.12.1 + Keras 1.2.2 on Python 2.
PyTorch 1.5pytorch-1.5PyTorch 1.5.0 + fastai 1.0.61 on Python 3.7.
PyTorch 1.4pytorch-1.4PyTorch 1.4.0 + fastai 1.0.60 on Python 3.6.
PyTorch 1.3pytorch-1.3PyTorch 1.3.0 + fastai 1.0.60 on Python 3.6.
PyTorch 1.2pytorch-1.2PyTorch 1.2.0 + fastai 1.0.60 on Python 3.6.
PyTorch 1.1pytorch-1.1PyTorch 1.1.0 + fastai 1.0.57 on Python 3.6.
PyTorch 1.0pytorch-1.0PyTorch 1.0.0 + fastai 1.0.51 on Python 3.6.
 pytorch-1.0:py2PyTorch 1.0.0 on Python 2.
PyTorch 0.4pytorch-0.4PyTorch 0.4.1 on Python 3.6.
 pytorch-0.4:py2PyTorch 0.4.1 on Python 2.
PyTorch 0.3pytorch-0.3PyTorch 0.3.1 on Python 3.6.
 pytorch-0.3:py2PyTorch 0.3.1 on Python 2.
PyTorch 0.2pytorch-0.2PyTorch 0.2.0 on Python 3.5
 pytorch-0.2:py2PyTorch 0.2.0 on Python 2.
PyTorch 0.1pytorch-0.1PyTorch 0.1.12 on Python 3.
 pytorch-0.1:py2PyTorch 0.1.12 on Python 2.
Theano 0.9theano-0.9Theano rel-0.8.2 + Keras 2.0.3 on Python3.5.
 theano-0.9:py2Theano rel-0.8.2 + Keras 2.0.3 on Python2.
CaffecaffeCaffe rc4 on Python3.5.
 caffe:py2Caffe rc4 on Python2.
TorchtorchTorch 7 with Python 3 env.
 torch:py2Torch 7 with Python 2 env.
Chainer 1.23chainer-1.23Chainer 1.23.0 on Python 3.
 chainer-1.23:py2Chainer 1.23.0 on Python 2.
Chainer 2.0chainer-2.0Chainer 1.23.0 on Python 3.
 chainer-2.0:py2Chainer 1.23.0 on Python 2.
MxNet 1.0mxnetMxNet 1.0.0 on Python 3.6.
 mxnet:py2MxNet 1.0.0 on Python 2.
原网站

版权声明
本文为[Life is sweet and good luck is good]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/176/202206250220556482.html