当前位置:网站首页>Anaconda安装+TensorFlow安装+Keras安装+numpy安装(包含镜像和版本信息兼容问题)
Anaconda安装+TensorFlow安装+Keras安装+numpy安装(包含镜像和版本信息兼容问题)
2022-06-25 03:58:00 【生活甜甜好运连连】
安装Anaconda
Anaconda各个版本的安装包(官网)(根据对应的Python版本找到需要的Anaconda版本安装包进行下载)
安装Anaconda时所有的框框都打勾,直接傻瓜式安装。(注意选择安装地址的时候,地址不要包含中文)
需要添加的镜像:
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
tensorflow和numpy对应的版本
tensorflow | numpy | cuda | cudnn |
---|---|---|---|
2.0.0 | 1.16.4 | ||
1.14.0 | 1.16.0 | 10.0 | 7.6.5 |
1.13.1 | 1.16.0 | ||
1.12.0 | 1.15.4 | ||
1.8.0 | 1.14.5 |
更改numpy版本方法:
pip install -U -i https://pypi.tuna.tsinghua.edu.cn/simple numpy==版本
# -U 是重装
# -i https://pypi.tuna.tsinghua.edu.cn/simple 是使用清华镜像
或者用另外一个镜像(这个镜像的速度更快)
http://pypi.douban.com/simple --trusted-host pypi.douban.com
1.打开Anaconda Prompt,检查Anaconda是否成功安装:conda --version
2.检测目前安装了哪些环境:conda info --envs
4.安装不同版本的python:conda create -n tensorflow python=3.6.5
用到的视频安装教程:Anaconda、Tensorflow、keras安装可能出现的问题及解决/经验分享
教程中用到的命令:Anaconda Prompt
1.(base)环境
python -m pip install -U pip
//正确的结果为:Successfully...
2.(base)环境
//创建名为tensorflow的环境,同时安装python
conda create --name tensorflow python=3.6
3.(base)
activate tensorflow
4.(tensorflow)
pip install tensorflow==1.15.0 -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
5.(tensorflow)
//检查tensorflow是否安装成功
python
import tensorflow as tf
//出现安装时间就是安装成功
6.(tensorflow)
pip install keras==2.2.5 -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
7.(tensorflow)
//检查keras是否安装成功
python
import keras
//安装成功会显示Using TensofFlow backend
我的Anaconda版本:Anaconda3-5.2.0
Python版本:3.6.1.2
keras版本:2.3.1
numpy版本:1.16.0
tensorflow版本:1.15.0
怎么查看安装的tensorflow的版本:
TensorFlow与Keras以及Python版本一一对应表
Framework | Env name (--env parameter) | Description |
---|---|---|
TensorFlow 2.2 | tensorflow-2.2 | TensorFlow 2.2.0 + Keras 2.3.1 on Python 3.7. |
TensorFlow 2.1 | tensorflow-2.1 | TensorFlow 2.1.0 + Keras 2.3.1 on Python 3.6. |
TensorFlow 2.0 | tensorflow-2.0 | TensorFlow 2.0.0 + Keras 2.3.1 on Python 3.6. |
TensorFlow 1.15 | tensorflow-1.15 | TensorFlow 1.15.0 + Keras 2.3.1 on Python 3.6. |
TensorFlow 1.14 | tensorflow-1.14 | TensorFlow 1.14.0 + Keras 2.2.5 on Python 3.6. |
TensorFlow 1.13 | tensorflow-1.13 | TensorFlow 1.13.0 + Keras 2.2.4 on Python 3.6. |
TensorFlow 1.12 | tensorflow-1.12 | TensorFlow 1.12.0 + Keras 2.2.4 on Python 3.6. |
tensorflow-1.12:py2 | TensorFlow 1.12.0 + Keras 2.2.4 on Python 2. | |
TensorFlow 1.11 | tensorflow-1.11 | TensorFlow 1.11.0 + Keras 2.2.4 on Python 3.6. |
tensorflow-1.11:py2 | TensorFlow 1.11.0 + Keras 2.2.4 on Python 2. | |
TensorFlow 1.10 | tensorflow-1.10 | TensorFlow 1.10.0 + Keras 2.2.0 on Python 3.6. |
tensorflow-1.10:py2 | TensorFlow 1.10.0 + Keras 2.2.0 on Python 2. | |
TensorFlow 1.9 | tensorflow-1.9 | TensorFlow 1.9.0 + Keras 2.2.0 on Python 3.6. |
tensorflow-1.9:py2 | TensorFlow 1.9.0 + Keras 2.2.0 on Python 2. | |
TensorFlow 1.8 | tensorflow-1.8 | TensorFlow 1.8.0 + Keras 2.1.6 on Python 3.6. |
tensorflow-1.8:py2 | TensorFlow 1.8.0 + Keras 2.1.6 on Python 2. | |
TensorFlow 1.7 | tensorflow-1.7 | TensorFlow 1.7.0 + Keras 2.1.6 on Python 3.6. |
tensorflow-1.7:py2 | TensorFlow 1.7.0 + Keras 2.1.6 on Python 2. | |
TensorFlow 1.5 | tensorflow-1.5 | TensorFlow 1.5.0 + Keras 2.1.6 on Python 3.6. |
tensorflow-1.5:py2 | TensorFlow 1.5.0 + Keras 2.1.6 on Python 2. | |
TensorFlow 1.4 | tensorflow-1.4 | TensorFlow 1.4.0 + Keras 2.0.8 on Python 3.6. |
tensorflow-1.4:py2 | TensorFlow 1.4.0 + Keras 2.0.8 on Python 2. | |
TensorFlow 1.3 | tensorflow-1.3 | TensorFlow 1.3.0 + Keras 2.0.6 on Python 3.6. |
tensorflow-1.3:py2 | TensorFlow 1.3.0 + Keras 2.0.6 on Python 2. | |
TensorFlow 1.2 | tensorflow-1.2 | TensorFlow 1.2.0 + Keras 2.0.6 on Python 3.5. |
tensorflow-1.2:py2 | TensorFlow 1.2.0 + Keras 2.0.6 on Python 2. | |
TensorFlow 1.1 | tensorflow | TensorFlow 1.1.0 + Keras 2.0.6 on Python 3.5. |
tensorflow:py2 | TensorFlow 1.1.0 + Keras 2.0.6 on Python 2. | |
TensorFlow 1.0 | tensorflow-1.0 | TensorFlow 1.0.0 + Keras 2.0.6 on Python 3.5. |
tensorflow-1.0:py2 | TensorFlow 1.0.0 + Keras 2.0.6 on Python 2. | |
TensorFlow 0.12 | tensorflow-0.12 | TensorFlow 0.12.1 + Keras 1.2.2 on Python 3.5. |
tensorflow-0.12:py2 | TensorFlow 0.12.1 + Keras 1.2.2 on Python 2. | |
PyTorch 1.5 | pytorch-1.5 | PyTorch 1.5.0 + fastai 1.0.61 on Python 3.7. |
PyTorch 1.4 | pytorch-1.4 | PyTorch 1.4.0 + fastai 1.0.60 on Python 3.6. |
PyTorch 1.3 | pytorch-1.3 | PyTorch 1.3.0 + fastai 1.0.60 on Python 3.6. |
PyTorch 1.2 | pytorch-1.2 | PyTorch 1.2.0 + fastai 1.0.60 on Python 3.6. |
PyTorch 1.1 | pytorch-1.1 | PyTorch 1.1.0 + fastai 1.0.57 on Python 3.6. |
PyTorch 1.0 | pytorch-1.0 | PyTorch 1.0.0 + fastai 1.0.51 on Python 3.6. |
pytorch-1.0:py2 | PyTorch 1.0.0 on Python 2. | |
PyTorch 0.4 | pytorch-0.4 | PyTorch 0.4.1 on Python 3.6. |
pytorch-0.4:py2 | PyTorch 0.4.1 on Python 2. | |
PyTorch 0.3 | pytorch-0.3 | PyTorch 0.3.1 on Python 3.6. |
pytorch-0.3:py2 | PyTorch 0.3.1 on Python 2. | |
PyTorch 0.2 | pytorch-0.2 | PyTorch 0.2.0 on Python 3.5 |
pytorch-0.2:py2 | PyTorch 0.2.0 on Python 2. | |
PyTorch 0.1 | pytorch-0.1 | PyTorch 0.1.12 on Python 3. |
pytorch-0.1:py2 | PyTorch 0.1.12 on Python 2. | |
Theano 0.9 | theano-0.9 | Theano rel-0.8.2 + Keras 2.0.3 on Python3.5. |
theano-0.9:py2 | Theano rel-0.8.2 + Keras 2.0.3 on Python2. | |
Caffe | caffe | Caffe rc4 on Python3.5. |
caffe:py2 | Caffe rc4 on Python2. | |
Torch | torch | Torch 7 with Python 3 env. |
torch:py2 | Torch 7 with Python 2 env. | |
Chainer 1.23 | chainer-1.23 | Chainer 1.23.0 on Python 3. |
chainer-1.23:py2 | Chainer 1.23.0 on Python 2. | |
Chainer 2.0 | chainer-2.0 | Chainer 1.23.0 on Python 3. |
chainer-2.0:py2 | Chainer 1.23.0 on Python 2. | |
MxNet 1.0 | mxnet | MxNet 1.0.0 on Python 3.6. |
mxnet:py2 | MxNet 1.0.0 on Python 2. |
边栏推荐
- Flutter FittedBox组件
- [openwrt] we recommend a domestically developed version of openwrt, an introduction to istoreos. It is very easy to use. It is mainly optimized. It solves the problem of Sinicization.
- Finereport displays and hides column data according to conditions
- Synchronous and asynchronous functions (callback function, promise, generator, async/await)
- 【LeetCode】148. 排序链表
- 【LeetCode】148. Sort linked list
- NFT Insider #63:The Sandbox与时代杂志达成合作,YGG成立西班牙subDAO
- 1、项目第二阶段——用户注册和登陆
- How to draw an industry investment map
- Mathematical analysis_ Notes_ Chapter 3: limits
猜你喜欢
Zoran community
Numpy NP tips: use OpenCV to interpolate and zoom the array to a fixed shape cv2 resize(res, dsize=(64, 64), interpolation=cv2. INTER_ CUBIC)
How much do you know about the use value of WMS warehouse management system
Hello CTP (II) -- Introduction to CTP
论文阅读《LSD-SLAM: Large-Scale Direct Monocular SLAM》
数字时代的“文艺复兴”?起底数字藏品,让人欢喜让人愁
Development of trading system (VII) -- Analysis of trading delay
Turn 2D photos into 3D models to see NVIDIA's new AI "magic"!
Watch out for the stolen face! So many risks of face recognition used every day?
How many images can opencv open?
随机推荐
LeetCode 劍指Offer II 091 粉刷房子[動態規劃] HERODING的LeetCode之路
讲座记录《惯性导航的新应用——惯性测量》
Hot and cold, sweet and sour, want to achieve success? Dengkang oral, the parent company of lengsuanling, intends to be listed on the main board of Shenzhen Stock Exchange
Simple integration of client go gin 11 delete
Uniapp makes mobile app programs, using uni Choosevideo record video, video playback is fuzzy, and the resolution is low
【LeetCode】148. 排序链表
@RequestBody解决获取参数为null
"Grammar sugar" -- my new programming knowledge
UCLA | generative pre training for black box optimization
1. first knowledge of chromatic harmonica
2021.4.15 note the difference between let, const and VaR in ES6
PHP code audit 1 - php Ini
讲座记录《捷联惯导解算的历史及发展》
Leetcode points to the leetcode road of offering II 091 house painting [dynamic planning] heroding
Flutter FittedBox组件
文本关键词提取:ansj
IntStream API介绍
Mathematical analysis_ Notes_ Chapter 3: limits
NFT insider 63: the sandbox reached a cooperation with Time magazine, and YGG established Spain's subdao
Although the Internet in the traditional sense has long ceased to exist, this does not mean that the Internet has long disappeared