当前位置:网站首页>Partition data 1
Partition data 1
2022-07-24 10:33:00 【nb1232】
import math
import numpy as np
import torch
from torch import nn
import matplotlib.pyplot as plt
import torchvision.datasets as datasets
from torch.utils import data
from torchvision import transforms
from torch.utils.data import Dataset
import torchvision
train_data=datasets.CIFAR10(root="../data", train=True, transform=transforms.ToTensor(), download=True)
test_data=datasets.CIFAR10(root="../data", train=False, transform=transforms.ToTensor(), download=True)
t0=[ i for i, x in enumerate(train_data.targets) if x == 0]
t1=[ i for i, x in enumerate(train_data.targets) if x == 1]
t2=[ i for i, x in enumerate(train_data.targets) if x == 2]
t3=[ i for i, x in enumerate(train_data.targets) if x == 3]
t4=[ i for i, x in enumerate(train_data.targets) if x == 4]
t5=[ i for i, x in enumerate(train_data.targets) if x == 5]
t6=[ i for i, x in enumerate(train_data.targets) if x == 6]
t7=[ i for i, x in enumerate(train_data.targets) if x == 7]
t8=[ i for i, x in enumerate(train_data.targets) if x == 8]
t9=[ i for i, x in enumerate(train_data.targets) if x == 9]
label0=[]
for i in t0:
label0.append(train_data.targets[i])
label1=[]
for i in t1:
label1.append(train_data.targets[i])
label2=[]
for i in t2:
label2.append(train_data.targets[i])
label3=[]
for i in t3:
label3.append(train_data.targets[i])
label4=[]
for i in t4:
label4.append(train_data.targets[i])
label5=[]
for i in t5:
label5.append(train_data.targets[i])
label6=[]
for i in t6:
label6.append(train_data.targets[i])
label7=[]
for i in t7:
label7.append(train_data.targets[i])
label8=[]
for i in t8:
label8.append(train_data.targets[i])
label9=[]
for i in t9:
label9.append(train_data.targets[i])
data0=np.array([])
for i in t0:
data0=np.append(data0,train_data.data[i])
data1=np.array([])
for i in t1:
data1=np.append(data1,train_data.data[i])
data2=np.array([])
for i in t2:
data2=np.append(data2,train_data.data[i])
data3=np.array([])
for i in t3:
data3=np.append(data3,train_data.data[i])
data4=np.array([])
for i in t4:
data4=np.append(data4,train_data.data[i])
data5=np.array([])
for i in t5:
data5=np.append(data5,train_data.data[i])
data6=np.array([])
for i in t6:
data6=np.append(data6,train_data.data[i])
data7=np.array([])
for i in t7:
data7=np.append(data7,train_data.data[i])
data8=np.array([])
for i in t8:
data8=np.append(data8,train_data.data[i])
data9=np.array([])
for i in t9:
data9=np.append(data9,train_data.data[i])
data0=data0.reshape(len(label0),32,32,3)
data1=data1.reshape(len(label1),32,32,3)
data2=data2.reshape(len(label2),32,32,3)
data3=data3.reshape(len(label3),32,32,3)
data4=data4.reshape(len(label4),32,32,3)
data5=data5.reshape(len(label5),32,32,3)
data6=data6.reshape(len(label6),32,32,3)
data7=data7.reshape(len(label7),32,32,3)
data8=data8.reshape(len(label8),32,32,3)
data9=data9.reshape(len(label9),32,32,3)
class DatasetXY(Dataset):
def __init__(self, x, y):
self._x = x
self._y = y
self._len = len(x)
def __getitem__(self, item): # The value returned in each cycle
return self._x[item], self._y[item]
def __len__(self):
return self._len
dataset0= DatasetXY(data0,label0)
dataset1= DatasetXY(data1,label1)
dataset2= DatasetXY(data2,label2)
dataset3= DatasetXY(data3,label3)
dataset4= DatasetXY(data4,label4)
dataset5= DatasetXY(data5,label5)
dataset6= DatasetXY(data6,label6)
dataset7= DatasetXY(data7,label7)
dataset8= DatasetXY(data8,label8)
dataset9= DatasetXY(data9,label9)
train1_iter=data.DataLoader(dataset0,batch_size=32,num_workers=0)
边栏推荐
- 机器学习小试(11)验证码识别测试-使用Qt与Tensorflow2进行深度学习实验
- OSPF含特殊区域实验,MGRE构建和重发布
- 图模型2--2022-5-13
- Dr. water 3
- SQL Server 2012 download and installation detailed tutorial
- ZOJ 2770 differential restraint system -- 2 -- May 20, 2022
- [recommendation system] the classic technical architecture of the data flow of the recommendation system + the most complete evolution map of the top 10 deep learning CTR models of Microsoft, Alibaba,
- 差分约束系统---1且2--2022年5月27日
- How to build a node development environment efficiently
- Design of dual machine hot standby scheme
猜你喜欢

差分约束系统---1且2--2022年5月27日

机器学习小试(10)使用Qt与Tensorflow创建CNN/FNN测试环境

机器学习小试(11)验证码识别测试-使用Qt与Tensorflow2进行深度学习实验

Simply use golang SQLC to generate MySQL query code

Sentinel three flow control effects

Scan line, weight segment tree
![[correcting Hongming] what? I forgot to take the](/img/41/c8fa6380ab63949ae6d904fdbb005c.png)
[correcting Hongming] what? I forgot to take the "math required course"!

Tree array-

In depth analysis of common cross end technology stacks of app

Adobe substance 3D Designer 2021 software installation package download and installation tutorial
随机推荐
MySQL - normal index
Erlang学习番外
N叉树、page_size、数据库严格模式修改、数据库中delect和drop的不同
757. Set the intersection size to at least 2: greedy application question
ZOJ 2770 differential restraint system -- 2 -- May 20, 2022
MySQL - 多列索引
Kotlin domain specific language (DSL)
Kotlin Advanced Grammar
Set up mail server with dynamic ip+mdaemon
Chapter V Modification implementation (impl) class
NiO knowledge points
Common Unicode encoding range
zoj 2770 差分约束系统---2--2022年5月20日
Sentinel 三种流控模式
图像处理:RGB565转RGB888
每日三题 7.21
Analysis of Kube proxy IPVS mode
Erlang learning 01
Adobe substance 3D Designer 2021 software installation package download and installation tutorial
Mysql database JDBC programming