当前位置:网站首页>deep learning statistical arbitrage

deep learning statistical arbitrage

2022-06-27 10:31:00 SyncStudy

deep learning statistical arbitrage

  • empirial
  • stanford
  • Jorge guijarro
  • markus

Motivation

  • Pair trading
  • GM and Ford
  • Assumption
    • prices are on average similar
  • Exploit temporal price different between similiar seests

Three components of statisical arbitarge

  • contrict protolio
  • trading signal

Foundational problem

Research question

  • arbitrage portolios
  • arbitarge signals

Contributions

  • Novel conceptual framework
  • Unified framework
  • To compare different statistical arbitrage methods
    • Portolio generation
    • signal extraction
    • allocation decision
  • Study each component and compare with conventional models

Novel methods

  • statistical factor
  • Convolution neural network

Empirical

  • substantially outperforms
  • sharpe ratios

Parametric models

  • PCA
  • cOINTEGRATION
  • STOCHASTIC CONTROL
  • SIMPLE PAIRS TRADING
  • INTRACTABLE PARAMETRIC MODELS WITH ml

Model

R n , t = β n , t − 1 T F t + ε R_{n,t}=\beta^T_{n,t-1}F_t+\varepsilon Rn,t=βn,t1TFt+ε

x : = ε t L : = ( ε n , t − L ) x:=\varepsilon_t^L:=(\varepsilon_{n,t-L}) x:=εtL:=(εn,tL)

w t − 1 ε = w ε ( θ ( ε t − 1 L ) ) w_{t-1}^\varepsilon=w^\varepsilon(\theta(\varepsilon_{t-1}^L)) wt1ε=wε(θ(εt1L))

w t − 1 R = w_{t-1}^R=\frac{}{} wt1R=

d X t = κ ( μ − X t ) dX_t = \kappa(\mu-X_t) dXt=κ(μXt)

θ i = ∑ j = 1 L W j f i l t e r X j \theta_i=\sum_{j=1}^{L}W_j^{filter}X_j θi=j=1LWjfilterXj

W W^{} W

θ C N N + T r a n s ( X ) \theta^{CNN+Trans}(X) θCNN+Trans(X)

y I ( 0 ) = ∑ m = 1 D s i z e W m l o c a l X y_I^{(0)}=\sum_{m=1}^{D_{size}}W_m^{local}X yI(0)=m=1DsizeWmlocalX

h i = ∑ I = 1 L α i , I x I ~ h_i=\sum_{I=1}^{L}\alpha_i,I\widetilde{x_I} hi=I=1Lαi,IxI

F a m a − F r e n c h F a c t o r Fama-French Factor FamaFrenchFactor

C N N + T r a n s f o r m CNN+Transform CNN+Transform

α , t α , R 2 \alpha, t_\alpha,R^2 α,tα,R2

t μ t_\mu tμ

w t − 1 = w t − 1 w_{t-1}=\frac{w_{t-1}^{}}{} wt1=wt1

L = 60 L=60 L=60

F F N FFN FFN

< 1 % <1\% <1%

T t r a i n = 4 T_{train}=4 Ttrain=4

f a s t − r e v e r s a l fast-reversal fastreversal

  • fast reversal
  • early momemtum
  • low frequency downturn
  • low frequency momentum

  • smooth trends or local curvature
  • most recent 14 days get more attention for trading decision

  • more complex than simple reversal patterns

c o s t ( w t − 1 R , w t − 2 R ) = 0.0005 ∣ ∣ w t − 1 cost(w_{t-1}^R, w_{t-2}^R)=0.0005||w_{t-1} cost(wt1R,wt2R)=0.0005wt1

B = 7 B=7 B=7

S R = 1 SR=1 SR=1

a r b i t r a g e arbitrage arbitrage

m e a n mean mean

Δ P = P 2 − P 1 \Delta P=P_2-P_1 ΔP=P2P1

V = ∑ V=\sum V=

V = ∣ β 0 + β 1 Δ P ∣ V=|\beta_0+\beta_1\Delta P| V=β0+β1ΔP

β 0 = c ( μ A − μ B ) \beta_0=c(\mu_A-\mu_B) β0=c(μAμB)

β 1 = f ( r i s k ) \beta_1=f(risk) β1=f(risk)

E ( V ) = E [ ∣ β 0 + β 1 σ P Z ∣ ] E(V)=E[|\beta_0+\beta_{1\sigma P}Z|] E(V)=E[β0+β1σPZ]

Z Z Z

N ( 0 , 1 ) N(0,1) N(0,1)

E ( V ) = c o n s t a n t E(V)=constant E(V)=constant

1 1 + ϕ ( h ∣ β 0 ∣ β 1 ) \frac{1}{1+\phi (\frac{h|\beta_0|}{\beta_1})} 1+ϕ(β1hβ0)1

K > S T K>S_T K>ST

K ≤ S τ K \le S_\tau KSτ

K − S τ K-S_\tau KSτ

K > S 0 , k = S 0 K>S_0, k=S_0 K>S0,k=S0

m o n e y n e s s = l o g ( K S 0 ) σ τ moneyness=\frac{log(\frac{K}{S_0})}{\sigma \sqrt{\tau}} moneyness=στlog(S0K)

l o n g d a t e d = l a r g e τ long dated = large \tau longdated=largeτ

M o n e y n e s s = l o g ( K S 0 ) σ τ Moneyness = \frac{log(\frac{K}{S_0})}{\sigma\sqrt{\tau}} Moneyness=στlog(S0K)

S P X SPX SPX

3 b i l l i o n 3 billion 3billion

R V t o p t i o n = ∑ i ( r i , t o p t i o n ) 2 RV_t^{option}=\sum_i (r_{i,t}^{option})^2 RVtoption=i(ri,toption)2

realized variance
R V t o p t i o n = ∑ i ( r i , t o p t i o n ) 2 RV_t^{option}=\sum_i(r_{i,t}^{option})^2 RVtoption=i(ri,toption)2

原网站

版权声明
本文为[SyncStudy]所创,转载请带上原文链接,感谢
https://dequn.blog.csdn.net/article/details/125476020