当前位置:网站首页>deep learning statistical arbitrage
deep learning statistical arbitrage
2022-06-27 10:31:00 【SyncStudy】
deep learning statistical arbitrage
- empirial
- stanford
- Jorge guijarro
- markus
Motivation
- Pair trading
- GM and Ford
- Assumption
- prices are on average similar
- Exploit temporal price different between similiar seests
Three components of statisical arbitarge
- contrict protolio
- trading signal
Foundational problem
Research question
- arbitrage portolios
- arbitarge signals
Contributions
- Novel conceptual framework
- Unified framework
- To compare different statistical arbitrage methods
- Portolio generation
- signal extraction
- allocation decision
- Study each component and compare with conventional models
Novel methods
- statistical factor
- Convolution neural network
Empirical
- substantially outperforms
- sharpe ratios
Parametric models
- PCA
- cOINTEGRATION
- STOCHASTIC CONTROL
- SIMPLE PAIRS TRADING
- INTRACTABLE PARAMETRIC MODELS WITH ml
Model
R n , t = β n , t − 1 T F t + ε R_{n,t}=\beta^T_{n,t-1}F_t+\varepsilon Rn,t=βn,t−1TFt+ε
x : = ε t L : = ( ε n , t − L ) x:=\varepsilon_t^L:=(\varepsilon_{n,t-L}) x:=εtL:=(εn,t−L)
w t − 1 ε = w ε ( θ ( ε t − 1 L ) ) w_{t-1}^\varepsilon=w^\varepsilon(\theta(\varepsilon_{t-1}^L)) wt−1ε=wε(θ(εt−1L))
w t − 1 R = w_{t-1}^R=\frac{}{} wt−1R=
d X t = κ ( μ − X t ) dX_t = \kappa(\mu-X_t) dXt=κ(μ−Xt)
θ i = ∑ j = 1 L W j f i l t e r X j \theta_i=\sum_{j=1}^{L}W_j^{filter}X_j θi=j=1∑LWjfilterXj
W W^{} W
θ C N N + T r a n s ( X ) \theta^{CNN+Trans}(X) θCNN+Trans(X)
y I ( 0 ) = ∑ m = 1 D s i z e W m l o c a l X y_I^{(0)}=\sum_{m=1}^{D_{size}}W_m^{local}X yI(0)=m=1∑DsizeWmlocalX
h i = ∑ I = 1 L α i , I x I ~ h_i=\sum_{I=1}^{L}\alpha_i,I\widetilde{x_I} hi=I=1∑Lαi,IxI
F a m a − F r e n c h F a c t o r Fama-French Factor Fama−FrenchFactor
C N N + T r a n s f o r m CNN+Transform CNN+Transform
α , t α , R 2 \alpha, t_\alpha,R^2 α,tα,R2
t μ t_\mu tμ
w t − 1 = w t − 1 w_{t-1}=\frac{w_{t-1}^{}}{} wt−1=wt−1
L = 60 L=60 L=60
F F N FFN FFN
< 1 % <1\% <1%
T t r a i n = 4 T_{train}=4 Ttrain=4
f a s t − r e v e r s a l fast-reversal fast−reversal
- fast reversal
- early momemtum
- low frequency downturn
- low frequency momentum
- smooth trends or local curvature
- most recent 14 days get more attention for trading decision
- more complex than simple reversal patterns
c o s t ( w t − 1 R , w t − 2 R ) = 0.0005 ∣ ∣ w t − 1 cost(w_{t-1}^R, w_{t-2}^R)=0.0005||w_{t-1} cost(wt−1R,wt−2R)=0.0005∣∣wt−1
B = 7 B=7 B=7
S R = 1 SR=1 SR=1
a r b i t r a g e arbitrage arbitrage
m e a n mean mean
Δ P = P 2 − P 1 \Delta P=P_2-P_1 ΔP=P2−P1
V = ∑ V=\sum V=∑
V = ∣ β 0 + β 1 Δ P ∣ V=|\beta_0+\beta_1\Delta P| V=∣β0+β1ΔP∣
β 0 = c ( μ A − μ B ) \beta_0=c(\mu_A-\mu_B) β0=c(μA−μB)
β 1 = f ( r i s k ) \beta_1=f(risk) β1=f(risk)
E ( V ) = E [ ∣ β 0 + β 1 σ P Z ∣ ] E(V)=E[|\beta_0+\beta_{1\sigma P}Z|] E(V)=E[∣β0+β1σPZ∣]
Z Z Z
N ( 0 , 1 ) N(0,1) N(0,1)
E ( V ) = c o n s t a n t E(V)=constant E(V)=constant
1 1 + ϕ ( h ∣ β 0 ∣ β 1 ) \frac{1}{1+\phi (\frac{h|\beta_0|}{\beta_1})} 1+ϕ(β1h∣β0∣)1
K > S T K>S_T K>ST
K ≤ S τ K \le S_\tau K≤Sτ
K − S τ K-S_\tau K−Sτ
K > S 0 , k = S 0 K>S_0, k=S_0 K>S0,k=S0
m o n e y n e s s = l o g ( K S 0 ) σ τ moneyness=\frac{log(\frac{K}{S_0})}{\sigma \sqrt{\tau}} moneyness=στlog(S0K)
l o n g d a t e d = l a r g e τ long dated = large \tau longdated=largeτ
M o n e y n e s s = l o g ( K S 0 ) σ τ Moneyness = \frac{log(\frac{K}{S_0})}{\sigma\sqrt{\tau}} Moneyness=στlog(S0K)
S P X SPX SPX
3 b i l l i o n 3 billion 3billion
R V t o p t i o n = ∑ i ( r i , t o p t i o n ) 2 RV_t^{option}=\sum_i (r_{i,t}^{option})^2 RVtoption=i∑(ri,toption)2
realized variance
R V t o p t i o n = ∑ i ( r i , t o p t i o n ) 2 RV_t^{option}=\sum_i(r_{i,t}^{option})^2 RVtoption=i∑(ri,toption)2
边栏推荐
- Arduino PROGMEM静态存储区的使用介绍
- 以后发现漏洞,禁止告诉中国!
- 2-4Kali下安装nessus
- C语言学习-Day_04
- 21:第三章:开发通行证服务:4:进一步完善【发送短信,接口】;(在【发送短信,接口】中,调用阿里云短信服务和redis服务;一种设计思想:BaseController;)
- When does the mobile phone video roll off?
- Working at home is more tiring than going to work at the company| Community essay solicitation
- User authentication technology
- 【云享新鲜】社区周刊·Vol.68-华为云招募工业智能领域合作伙伴,强力扶持+商业变现
- [noodle classic] Yunze Technology
猜你喜欢
audiotrack与audioflinger
Error im002 when Oracle connects to MySQL
Analysis of mobile ar implementation based on edge computing (Part 2)
Mail system (based on SMTP protocol and POP3 protocol -c language implementation)
In the three-tier architecture, at which layer is the database design implemented, not at the data storage layer?
2-4 installation of Nessus under Kali
[tcapulusdb knowledge base] Introduction to tmonitor stand-alone installation guidelines (I)
感应电机直接转矩控制系统的设计与仿真(运动控制matlab/simulink)
微软云 (Microsoft Cloud) 技术概述
CPU设计(单周期和流水线)
随机推荐
Win10快捷键整理
Leetcode 729. 我的日程安排表 I(牛逼,已解决)
数据库之元数据
Ubuntu manually installing MySQL
Mail system (based on SMTP protocol and POP3 protocol -c language implementation)
[tcapulusdb knowledge base] Introduction to tmonitor background one click installation (II)
Explain the imaging principle of various optical instruments in detail
直播電子商務應用程序開發需要什麼基本功能?未來發展前景如何?
学习笔记之——数据集的生成
audiotrack与audioflinger
Ubuntu手動安裝MySQL
【TcaplusDB知识库】TcaplusDB机型管理介绍
JS file upload and download
在外企远程办公是什么体验? | 社区征文
[tcapulusdb knowledge base] Introduction to new models of tcapulusdb
Go zero micro Service Practice Series (VII. How to optimize such a high demand)
Flutter wechat sharing
软交换呼叫中心系统的支撑系统
用户认证技术
导师邀请你继续跟他读博,你会不会立马答应?