当前位置:网站首页>Single cell code analysis - gynecological cancer single cell transcriptome and chromatin accessibility analysis 1
Single cell code analysis - gynecological cancer single cell transcriptome and chromatin accessibility analysis 1
2022-07-24 17:50:00 【Hedgehog with mustache】
This article is 2021 Years published in MC Articles on , The article mainly talks about the use of single cell multiomics to analyze gynecological cancer .
Article title :A multi-omic single-cell landscape of human gynecologic malignancies
doi:10.1016/j.molcel.2021.10.013
The author provides a code link :https://github.com/RegnerM2015/scENDO_scOVAR_2020
The author said that according to this link, you can roughly walk through the content :ttps://github.com/RegnerM2015/scENDO_scOVAR_2020/wiki, Therefore, I also analyze the code basically according to this .
Introduction
This article is to analyze the single cell map of gynecological diseases . Therefore, the immediate treatment after surgical resection was selected 11 Tissue samples of individual ovarian and endometrial tumors , Dissociate single cells , Constructed a transcriptome with single cell resolution (SCRNA-SEQ) And chromatin accessibility (SCATAC-SEQ) Manual . This rare data set provides a solution to the complex cellular heterogeneity of these tumors , Enable researchers to link changes in chromatin accessibility to changes in gene expression . At the same time, these data provide information on how cancer cells reuse and acquire remote regulatory elements to drive the development of carcinogenic transcription patterns .
The following is the source of the sample :
The author also constructed the relevant experimental flow chart :
cellranger and cellranger atac processing
After dissociation of single cells , Get offline data , And then in cellranger On the analysis of ( Because the author chose 10X Single cell platform for labeling ).
Transcriptome analysis mainly uses CellRanger (version 3.1.0).
## Add : Construction of reference genome index
cellranger mkref --genome= GRCh38-3.0.0 \
--fasta=GRCh38-3.0.0.fa \
--genes=GRCh38-3.0.0.gtf \
--ref-version=3.0.0/Example_Patients1-2_scRNA-seq_mkfastq.sh
#!/usr/bin/env bash
#SBATCH --job-name HMGVCBGX9
#SBATCH -c 16
#SBATCH --mem 80g
#SBATCH --partition allnodes
#SBATCH --output HMGVCBGX9_demultiplex.job.out
#SBATCH --error HMGVCBGX9_demultiplex.job.err
## Data source file
DATA=/datastore/nextgenout5/share/labs/bioinformatics/seqware/francolab_10x_copy
## Data result file
OUT=/datastore/nextgenout5/share/labs/francolab/scRNA-seq_Endometrial.05.15.2019
## First integrate the offline files
cellranger mkfastq --id=HMGVCBGX9 \
--run=${DATA}/190514_NS500270_0297_AHMGVCBGX9 \
--csv=${OUT}/Samplesheet.csv \
--qc \
--localcores=16/Example_Patient1_scRNA-seq_CellRanger-count.sh
#!/usr/bin/env bash
##SBATCH: Submit the assignment
#SBATCH --job-name 3533EL-RNA_F6
#SBATCH -c 16
#SBATCH --mem 80g
#SBATCH --partition allnodes
#SBATCH --output 3533EL-RNA_F6.cellranger-count.job.update.out
#SBATCH --error 3533EL-RNA_F6.cellranger-count.job.update.err
DATA=/datastore/nextgenout5/share/labs/francolab/Data
cellranger count --id=3533EL-RNA_F6_Update \
--fastqs=./fastq_path/HMGVCBGX9/3533EL-RNA_F6 \
--transcriptome=${DATA}/refdata-cellranger-GRCh38-3.0.0 \ ## Reference genome
--sample=3533EL-RNA_F6 \ ## According to sample Change the name of the content
--localcores=16 \
--localmem=80ATAC The analysis mainly uses CellRanger ATAC (version 1.2.0).
## Reference genome index construction
## Build configuration files human.config
{
organism: "human" # The folder name can only be output after the species is clear
genome: ["GRCh38-3.0.0"]
input_fasta: ["/path/to/reference/GRCh38-3.0.0.fa"]
input_gtf: ["/path/to/reference/GRCh38-3.0.0.gtf"]
non_nuclear_contigs: ["chrM"] # Choose to do , Remove some annotation information from mitochondria
input_motifs: "/path/to/jaspar/motifs.pfm" #motif File path
}
## structure ATAC Reference genome
cellranger-atac mkref --config=/home/path/to/human.config/Example_Patients1-2_scATAC-seq_mkfastq.sh
#!/usr/bin/env bash
#SBATCH --job-name H333JBGXB_2
#SBATCH -c 16
#SBATCH --mem 80g
#SBATCH --partition allnodes
#SBATCH --output H333JBGXB_demultiplex.2.job.out
#SBATCH --error H333JBGXB_demultiplex.2.job.err
## Data sources
DATA=/datastore/nextgenout5/share/labs/bioinformatics/seqware/francolab_10x_copy
## Data result file
OUT=/datastore/nextgenout5/share/labs/francolab/scATAC-seq_Endometrial.05.16.2019
cellranger-atac mkfastq --id=H333JBGXB_2 \
--run=${DATA}/190515_NS500270_0298_AH333JBGXB \
--csv=${OUT}/Samplesheet.2.csv \
--qc \
--localcores=16/Example_Patient1_scATAC-seq_CellRanger-count.sh
#!/usr/bin/env bash
#SBATCH --job-name 3533EL-ATAC_A3
#SBATCH -c 16
#SBATCH --mem 80g
#SBATCH --partition allnodes
#SBATCH --output 3533EL-ATAC_A3.cellranger-count.job.update.out
#SBATCH --error 3533EL-ATAC_A3.cellranger-count.job.update.err
DATA=/datastore/nextgenout5/share/labs/francolab/Data
cellranger-atac count --id=3533EL-ATAC_A3_Update \
--fastqs=./fastq_path2/H333JBGXB/3533EL-ATAC_A3 \
--reference=${DATA}/refdata-cellranger-atac-GRCh38-1.2.0 \ ## Reference genome
--sample=3533EL-ATAC_A3 \
--localcores=16summary
It is mentioned in the author's important description of the data format provided used in this study : Of each patient sample processed scATAC-seq The data is provided in the form of fragment files , or “ Be similar to bed Form file for , Each line represents the unique ATAC-seq fragment ”. More information about this file format , Please visit Cell Ranger Website :https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/output/fragments. We provide fragment files , instead of cellranger-atac Generated filtered peak barcode matrix , Because we use fragment files as in ArchR R Executed in package scATAC-seq The starting input of the analysis (Granja wait forsomeone ,2021 year ). We didn't use by cellranger-atac Generated filtered peak barcode matrix , Because the algorithm calls the peak in a pseudo batch way ( That is, use all signals from all cells in the sample ). This pseudo volume method effectively masks cell type specific patterns in chromatin accessibility , And will damage rare cell types ATAC Signal contribution (Granja wait forsomeone ,2021).
This problem mentioned by the author also encountered this situation in my analysis , At the same time, we also use this method for analysis , It is also more conducive to subsequent analysis .
So when analyzing single cell data , The first is to analyze according to the basic process , Then judge the data quality , Then on cellranger Change the parameters of the software , It is different from the previous software , Therefore, a large number of parameters need to be adjusted in the first step .
边栏推荐
- Preliminary study of Oracle pl/sql
- 获取1688app上原数据 API
- 05mysql lock analysis
- 2.3.1 view drawing process
- Detailed explanation of ansible automatic operation and maintenance (V) the setting and use of variables in ansible, the use of jinja2 template and the encryption control of ansible
- 0701~放假总结
- In the morning, Tencent took out 38K, which let me see the ceiling of the foundation
- NPM install reported -4058 error
- Make good use of these seven tips in code review, and it is easy to establish your opposition alliance
- Niuke linked list solution record
猜你喜欢

ShardingSphere数据库读写分离

C语言中的字符与字符串库函数的使用以及模拟实现

快速完成intelij idea的单元测试JUnit4设置

C语言编程训练题目:左旋字符串中的k个字符、小乐乐与欧几里得、打印箭型图案、公务员面试、杨树矩阵

面会菜评论分析

Win10 super good-looking mouse theme, you also try it

Getaverse,走向Web3的远方桥梁

二维卷积——torch.nn.conv2d的使用

Two dimensional convolution -- use of torch.nn.conv2d

Common methods of number and math classes
随机推荐
《STL源码剖析》应该怎样读?
Make good use of these seven tips in code review, and it is easy to establish your opposition alliance
Shardingsphere database read / write separation
0615~用自定义注解实现RBAC权限管理
C # print reports using fastreport.net
Getaverse, a distant bridge to Web3
Polymorphism, abstract class, interface
213. 打家劫舍 II-动态规划
C语言编程训练题目:左旋字符串中的k个字符、小乐乐与欧几里得、打印箭型图案、公务员面试、杨树矩阵
去不图床容量兑换
0616 end of Project II ~ ~ general summary
new也可以创建对象,为什么需要工厂模式?
awk从入门到入土(19)awk扩展插件,让awk如虎添翼
Df2net 3D model deployment
0627~放假知识总结
Inherit, override, overload
0615 ~ realize RBAC permission management with user-defined annotations
es(1)
Development Series III of GaN (lapgan, srgan)
Openlayers: point aggregation effect