当前位置:网站首页>Paper notes: multi label learning dm2l
Paper notes: multi label learning dm2l
2022-06-24 08:21:00 【Minfan】
Abstract : Share your understanding of the paper . See the original Ma, Z.-C., & Chen, S.-C. (2021). Expand globally, shrink locally: Discrimi-nant multi-label learning with missing labels. Pattern Recognition, 111, 107675.
1. Contribution of thesis
- Optimize both globally and locally ;
- Support nonlinear transformation with kernel function ;
- Theoretical analysis in place .
2. Basic symbols
Symbol | meaning | explain |
---|---|---|
X ∈ R n × d \mathbf{X} \in \mathbb{R}^{n \times d} X∈Rn×d | Attribute matrix | |
X k ∈ R n k × d \mathbf{X}_k \in \mathbb{R}^{n_k \times d} Xk∈Rnk×d | With k k k Attribute submatrix of labels | |
Y ∈ { − 1 , + 1 } n × c \mathbf{Y} \in \{-1, +1\}^{n \times c} Y∈{ −1,+1}n×c | Label matrix | |
Y ~ ∈ { − 1 , + 1 } n × l \tilde{\mathbf{Y}} \in \{-1, +1\}^{n \times l} Y~∈{ −1,+1}n×l | Observed label matrix | |
Ω = { 1 , … , n } × { 1 , … , c } \mathbf{\Omega} = \{1, \dots, n\} \times \{1, \dots, c\} Ω={ 1,…,n}×{ 1,…,c} | Observation tag location set | |
W ∈ R m × l \mathbf{W} \in \mathbb{R}^{m \times l} W∈Rm×l | coefficient matrix | It's still a linear model |
w i ∈ R m \mathbf{w}_i \in \mathbb{R}^m wi∈Rm | The coefficient vector of a label | |
C ∈ R l × l \mathbf{C} \in \mathbb{R}^{l \times l} C∈Rl×l | Label correlation matrix | Pairwise correlation , Does not satisfy symmetry |
3. Algorithm
Basic optimization objectives :
min 1 2 ∥ R Ω ( X W ) − Y ~ ∥ F 2 + λ d ∥ X W ∥ ∗ (1) \min \frac{1}{2} \|R_{\Omega}(\mathbf{XW}) - \tilde{\mathbf{Y}}\|_F^2 + \lambda_d \|\mathbf{XW}\|_*\tag{1} min21∥RΩ(XW)−Y~∥F2+λd∥XW∥∗(1)
among ,
- The loss function section does not consider missing values , This is a normal operation .
- Kernel regularity (nuclear norm) The prediction matrix is partially considered , Not just X W \mathbf{XW} XW, It's a little strange. .
The optimization objective after considering the label structure :
min 1 2 ∥ R Ω ( X W ) − Y ~ ∥ F 2 + λ d ( ∑ k = 1 c ∥ X k W ∥ ∗ − ∥ X W ∥ ∗ ) , (2) \min \frac{1}{2} \|R_{\Omega}(\mathbf{XW}) - \tilde{\mathbf{Y}}\|_F^2 + \lambda_d \left(\sum_{k = 1}^c \|\mathbf{X}_k\mathbf{W}\|_* - \|\mathbf{XW}\|_*\right), \tag{2} min21∥RΩ(XW)−Y~∥F2+λd(k=1∑c∥XkW∥∗−∥XW∥∗),(2)
among ,
- ∥ X k W ∥ ∗ \|\mathbf{X}_k\mathbf{W}\|_* ∥XkW∥∗ It expresses the local label structure , The smaller the better ;
- ∥ X W ∥ ∗ \|\mathbf{XW}\|_* ∥XW∥∗ It expresses the global label structure , The bigger the better ( More separable , The higher the amount of information ).
- These two points are the source of the topic .
Add nonlinear optimization objective :
min 1 2 ∥ R Ω ( X W ) − Y ~ ∥ F 2 + λ d ( ∑ k = 1 c ∥ f ( X k ) W ∥ ∗ − ∥ f ( X ) W ∥ ∗ ) , (5) \min \frac{1}{2} \|R_{\Omega}(\mathbf{XW}) - \tilde{\mathbf{Y}}\|_F^2 + \lambda_d \left(\sum_{k = 1}^c \|f(\mathbf{X}_k)\mathbf{W}\|_* - \|f(\mathbf{X})\mathbf{W}\|_*\right), \tag{5} min21∥RΩ(XW)−Y~∥F2+λd(k=1∑c∥f(Xk)W∥∗−∥f(X)W∥∗),(5)
among f ( ⋅ ) f(\cdot) f(⋅) Nonlinear transformation caused by kernel function .
4. Summary
- Another pile of theoretical proofs .
边栏推荐
- longhorn安装与使用
- Getting started with crawler to giving up 06: crawler play Fund (with code)
- Analysis of abnormal problems in domain name resolution in kubernetes
- VsCode主题推荐
- Phonics
- Atguigu---16-custom instruction
- Learning event binding of 3D visualization from scratch
- C# Lambda
- 软件工程导论——第二章——可行性研究
- 宝塔面板安装php7.2安装phalcon3.3.2
猜你喜欢
2021-03-09 COMP9021第七节课笔记
对于flex:1的详细解释,flex:1
longhorn安装与使用
LabVIEW查找n个元素数组中的质数
The first exposure of Alibaba cloud's native security panorama behind the only highest level in the whole domain
宝塔面板安装php7.2安装phalcon3.3.2
Leetcode 207: course schedule (topological sorting determines whether the loop is formed)
解决笔记本键盘禁用失败问题
有关iframe锚点,锚点出现上下偏移,锚点出现页面显示问题.iframe的srcdoc问题
搜索与推荐那些事儿
随机推荐
Small sample fault diagnosis - attention mechanism code - Implementation of bigru code parsing
11-- longest substring without repeated characters
【毕业季】你好陌生人,这是一封粉色信笺
Analysis of abnormal problems in domain name resolution in kubernetes
2021-03-04 COMP9021第六节课笔记
Simple summary of lighting usage
根据网络上的视频的m3u8文件通过ffmpeg进行合成视频
OC Extension 检测手机是否安装某个App(源码)
软件过程与项目管理期末复习与重点
解决笔记本键盘禁用失败问题
Optimization and practice of Tencent cloud EMR for cloud native containerization based on yarn
2021-03-16 COMP9021第九节课笔记
487. number of maximum consecutive 1 II ●●
Markdown 实现文内链接跳转
You get in Anaconda
Auto usage example
longhorn安装与使用
1279_ Vsock installation failure resolution when VMware player installs VMware Tools
js滚动div滚动条到底部
More than observation | Alibaba cloud observable suite officially released