当前位置:网站首页>(dkby) DFL learning notes
(dkby) DFL learning notes
2022-07-24 07:50:00 【Electric power department of University of Technology】
One 、DFL Change your mind : First convert the video into pictures , Extract faces from pictures , Learn features from faces . Then apply the model , First change the face of the picture , And then combine the pictures into a video , At the same time, bring the audio track of the original video .
Two 、 technological process :
1.src Video decomposition image 2.dst Video decomposition image
3.src Extract the face 4.dst Extract the face
5. Training models 6. Application model 7. Synthetic video
3、 ... and 、 Script :
2) src Video extraction image extract images from video data_src.bat
3) dst Video extraction image ( Full frame rate ) extract images from video data_dst FULL FPS.bat
4) src Automatically extract face data_src faceset extract.bat
5) dst Automatically extract face data_dst faceset extract.bat
6) Training SAEHD train SAEHD.bat
7) application SAEHD merge SAEHD.bat
8) synthesis MP4 video merged to mp4.bat
Four 、 Pre training model :
If you use someone else's model :use pretrain mode Change it to N, Turn off the pre training mode so that the model will restore the iteration count to 0
If you train the model yourself : Create the model normally , Pre training mode selection n, then src and dst Of aligned In the folder , Put your existing face data pictures ,src and dst It doesn't matter to repeat , The more pictures, the better , The more complicated the better .
5、 ... and 、 Training parameters
1.[0] Which GPU indexes to choose? : Please enter GPU Serial number
2.Choose one of saved models, or enter a name to create a new model. Select an existing model , Or enter a name to create a new model
3.Choose one or several GPU idxs (separated by comma). Choose one or more GPU Serial number
4.[0] Autobackup every N hour Every time N Hour backup ( 0..24 ?:help ) : Select the automatic backup time
5.[n] Write preview history ( y/n ?:help ) : Record save preview
6.[n] Choose image for the preview history ( y/n ) : Specify the preview
7.[0] Target iteration Target iterate : Target iterations
8.[y] Flip faces randomly ( y/n ?:help ) : Flip the face randomly
9.[2] Batch_size ( ?:help ) : ? Batch size
10.[512] Resolution ( 64-640 ?:help ) : ? Model resolution
11.[wf] Face type Face type ( h/mf/f/wf/head ?:help ) : Select face type
12.[liae-ud] AE architecture ( ?:help ) : ?
'df' keeps more identity-preserved face.
'liae' can fix overly different face shapes.
'-u' increased likeness of the face.
'-d' (experimental) doubling the resolution using the same computation cost.
Examples: df, liae, df-d, df-ud, liae-ud, ...
The architecture of the model
13.[256] AutoEncoder dimensions ( 32-1024 ?:help ) : The width of the bottleneck layer in the middle of the model
14.[64] Encoder dimensions ( 16-256 ?:help ) : The width of the model coding layer
15.[64] Encoder dimensions ( 16-256 ?:help ) : The width of the model decoding layer
16.[n] Masked training ( y/n ?:help ) : ? Only train the mask part
17.[0.0] GAN power ( 0.0 .. 1.0 ?:help ) :GAN The intensity of
6、 ... and 、 Training and debugging parameters (2022.7.18 edition )
face type : WF
random_flip : off
adabelief : on
eyes_mouth_prio : on
ct_mode: lct .
10-30W
learning rate drop:y
10-30W
random warp:n
GAN Training 10-30W
GAN poewer: 0.1
边栏推荐
- Case practice - panoramic image mosaic: feature matching method
- Debug No4 use renderdoc to troubleshoot bugs
- FlinkSQL-UDF自定义数据源
- Log in to the server using the fortress machine (springboard machine)
- About using the alignment function of VMD
- Hcip 13th day notes
- [information system project manager] Chapter VII recheck cost management knowledge structure
- Image feature SIFT (scale invariant feature transform)
- 基于VSCode聊聊编译器那些事儿
- Installation and use of Zen path & defect report & defect operation
猜你喜欢
![[cloud native] MySQL index analysis and query optimization](/img/ca/79783721637641cb8225bc26a8c4a9.png)
[cloud native] MySQL index analysis and query optimization

13.Unity2D 横版 可上下左右移动的双向平台(双向行走+可移动+单独判定)+随机平台生成

【sklearn】PCA

XSS vulnerability learning

Devops essay

Jenkins detailed deployment

【sklearn】tree.DecisionTreeClassifier

Movie recommendation system

Advanced part of C language I. data storage

Requests crawler implements a simple web page collector
随机推荐
Collection of sorting topics
2022-07-23: given n items, each item has weight (w[i]) and value (v[i]), only two items can be selected at most, and the weight does not exceed bag. What is the maximum return value? N <= 10^5, w[i] <
App performance test case
C language file operation
Typescript double question mark operator
MS SQL Server 2019 learning
abstract class
Selenium basic knowledge automatic login QQ space
Advanced part of C language IV. detailed explanation of user-defined types
Semantic slam: Probabilistic Data Association for semantic slam
CentOS 7 install mysql5.6.37
DevOps随笔
Do you know the use of string?
[sklearn] RF cross validation out of bag data parameter learning curve grid search
Generate API documents using swagger2markup
Starting from scratch C language intensive Part 3: Functions
Sense dimension design responsive layout
HCIP第十天笔记
【Pytorch】conv2d torchvision.transforms
Kubernetes:(一)基本概念