当前位置:网站首页>Yolov6's fast and accurate target detection framework is open source
Yolov6's fast and accurate target detection framework is open source
2022-06-27 06:48:00 【AI vision netqi】
First look at YOLOv6 precision :
| Model | Size | mAPval 0.5:0.95 | SpeedV100 fp16 b32 (ms) | SpeedV100 fp32 b32 (ms) | SpeedT4 trt fp16 b1 (fps) | SpeedT4 trt fp16 b32 (fps) | Params (M) | Flops (G) |
|---|---|---|---|---|---|---|---|---|
| YOLOv6-n | 416 640 | 30.8 35.0 | 0.3 0.5 | 0.4 0.7 | 1100 788 | 2716 1242 | 4.3 4.3 | 4.7 11.1 |
| YOLOv6-tiny | 640 | 41.3 | 0.9 | 1.5 | 425 | 602 | 15.0 | 36.7 |
| YOLOv6-s | 640 | 43.1 | 1.0 | 1.7 | 373 | 520 | 17.2 | 44.2 |
There is an obvious missed detection in the lower right corner , Than yoloe The recall rate should be low .

yoloe-s effect :

yoloe Use the experience notes :
yoloe Target detection usage notes _AI Visual netqi's blog -CSDN Blog
yolov5 precision :
| Model | size (pixels) | mAPval 0.5:0.95 | mAPval 0.5 | Speed CPU b1 (ms) | Speed V100 b1 (ms) | Speed V100 b32 (ms) | params (M) | FLOPs @640 (B) |
|---|---|---|---|---|---|---|---|---|
| YOLOv5n | 640 | 28.0 | 45.7 | 45 | 6.3 | 0.6 | 1.9 | 4.5 |
| YOLOv5s | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
| YOLOv5m | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
| YOLOv5l | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 |
| YOLOv5x | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 |
| YOLOv5n6 | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 |
| YOLOv5s6 | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 |
| YOLOv5m6 | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 |
| YOLOv5l6 | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 |
| YOLOv5x6 + TTA |
yoloe precision :
| PP-YOLOE-s | 640 | 43.1% | Training... | Training... | 7.93 | 17.36 | baidu pan code:qfld | baidu pan code:mwjy |
The following is from :
Code address :https://github.com/meituan/YOLOv6
Accuracy comparison :

chart 1-1 YOLOv6 Performance comparison between each size model and other models

chart 1-2 YOLOv6 Performance comparison with other models at different resolutions

02
Yolov6 key technology

Hardware-friendly Backbone network design


chart 2 Roofline Model Introduction chart


chart 3 Rep The fusion process of operators [4]


chart 4 EfficientRep Backbone chart


chart 5 Rep-PAN chart
More concise and efficient Decoupled Head


chart 6 Efficient Decoupled Head chart
More effective training strategies



03
Experimental results and visualization
After the above optimization strategies and improvements ,YOLOv6 The model has achieved excellent performance in many different sizes . The following table 1 It shows YOLOv6-nano Results of ablation experiments , It can be seen from the experimental results that , Our self-designed detection network has brought great gains in accuracy and speed .

surface 1 YOLOv6-nano Ablation results
The following table 2 It shows YOLOv6 And other current mainstream YOLO Experimental results of a series of algorithms . You can see from the table that :

surface 2 YOLOv6 Comparison of the performance of each size model with other models

04
Summary and prospect

边栏推荐
- 云服务器配置ftp、企业官网、数据库等方法
- Force buckle 179, max
- The fourth question of the 299th weekly match 6103 Minimum fraction of edges removed from the tree
- 面试官:大量请求 Redis 不存在的数据,从而打倒数据库,你有什么方案?
- 分数阶PID控制
- Basic SQL operations in tidb
- An Empirical Evaluation of In-Memory Multi-Version Concurrency Control
- Mathematical modeling contest for graduate students - optimal application of UAV in rescue and disaster relief
- LeetCode 0086. Separate linked list
- 聊聊领域驱动设计
猜你喜欢

SQL injection bypass (I)

路由器和交换机的区别

Quick realization of Bluetooth ibeacn function

Quick personal site building guide using WordPress

解决 Win10 Wsl2 IP 变化问题

IDEA中关于Postfix Completion代码模板的一些设置

Distribution gaussienne, régression linéaire, régression logistique

JVM object composition and storage

快速实现Thread Mesh组网详解

2022 CISP-PTE(一)文件包含
随机推荐
One year's experience of technical personnel in Entrepreneurship
SQL injection bypass (I)
Winow10 installation nexus nexus-3.20.1-01
Centos7.9 install MySQL 5.7 and set startup
【OpenAirInterface5g】RRC NR解析之RrcSetupComplete
An Empirical Evaluation of In-Memory Multi-Version Concurrency Control
面试官:大量请求 Redis 不存在的数据,从而打倒数据库,你有什么方案?
NoViableAltException([email protected][2389:1: columnNameTypeOrConstraint : ( ( tableConstraint ) | ( columnNameT
Some settings about postfix completion code template in idea
Machine learning
[QT notes] basic use of qregularexpression in QT
研究生数学建模竞赛-无人机在抢险救灾中的优化应用
Information System Project Manager - Chapter VII project cost management
Inter thread wait and wake-up mechanism, singleton mode, blocking queue, timer
HTAP Quick Start Guide
Caldera安装及简单使用
2022 CISP-PTE(二)SQL注入
JVM tuning ideas
主动学习(active learning)
IDEA一键生成Log日志