当前位置:网站首页>Evaluation - TOPSIS
Evaluation - TOPSIS
2022-06-26 15:24:00 【Lu 727】
1、 effect
TOPSIS Method is a commonly used comprehensive evaluation method within the group , Can make full use of the information of the original data , The results can accurately reflect the gap between evaluation schemes . The basic process is based on the normalized original data matrix , The cosine method is used to find the best scheme and the worst scheme in the finite scheme , Then calculate the distance between each evaluation object and the best scheme and the worst scheme respectively , The relative proximity between each evaluation object and the optimal scheme is obtained , Take this as the basis for evaluating the advantages and disadvantages . This method has no strict restrictions on data distribution and sample size , The data calculation is simple and easy .
2、 Input / output description
Input : At least two or more quantitative variables .
Output : Reflect the comprehensive score of assessment indicators in quantitative evaluation .
3、 Case example
In order to objectively evaluate the actual situation of graduate education in China and the teaching quality of graduate schools , The Academic Degrees Committee Office of the State Council, based on per capita monographs 、 Teacher student ratio 、 The scientific research funds and the overdue graduation rate shall be evaluated by the graduate school .

4、 Modeling steps
1. The original data is the same as the trend
Distinguish the indicator categories in the indicator system ( High or low priority ) , And according to different types of indicators, we need to carry out forward processing according to different formulas . structure n That's ok m Columns of the matrix X , Matrix
It means the first one i The... Of the first object j Values of indicators . The conversion formula is as follows
Very small :
The middle type :
Interval type :
2. Build a standardized matrix

3. Calculate the difference between each evaluation index and the best and worst vectors

among
For the first time j Weight of attributes ( Analytic hierarchy process or entropy weight method ).
4. Measure the closeness between the evaluation object and the optimal scheme

The bigger the value is. , It indicates that the better the evaluation object is
边栏推荐
- Cluster addslots establish a cluster
- Function: crypto JS encryption and decryption
- 【ceph】CephFS 内部实现(四):MDS是如何启动的?--未消化
- Is the QR code for account opening given by the manager of the securities firm safe? Who can I open an account with?
- Vsomeip3 dual computer communication file configuration
- Optimizing for vectorization
- php文件上传00截断
- Using restcloud ETL shell component to schedule dataX offline tasks
- 【ceph】mkdir|mksnap流程源码分析|锁状态切换实例
- [tcapulusdb knowledge base] tcapulusdb OMS business personnel permission introduction
猜你喜欢

刷题笔记(十九)--二叉树:二叉搜索树的修改与构造

【小程序实战系列】小程序框架 页面注册 生命周期 介绍

小程序:uniapp解决 vendor.js 体积过大的问题

【SNMP】snmp trap 介绍、安装、命令|Trap的发送与接收代码实现

【TcaplusDB知识库】TcaplusDB系统用户组介绍

一篇博客彻底掌握:粒子滤波 particle filter (PF) 的理论及实践(matlab版)

【TcaplusDB知识库】TcaplusDB数据构造介绍

【TcaplusDB知识库】TcaplusDB单据受理-创建业务介绍
![[tcapulusdb knowledge base] tcapulusdb doc acceptance - table creation approval introduction](/img/66/f3ab0514d691967ad88535ae1448c1.png)
[tcapulusdb knowledge base] tcapulusdb doc acceptance - table creation approval introduction

【ceph】CephFS 内部实现(三):快照
随机推荐
【ceph】CephFS 内部实现(四):MDS是如何启动的?--未消化
[CEPH] cephfs internal implementation (I): Concept -- undigested
Restcloud ETL extraction de données de table de base de données dynamique
About selenium common. exceptions. Webdriverexception: message: an unknown server side error solution (resolved)
【TcaplusDB知识库】TcaplusDB单据受理-创建游戏区介绍
Sikuli 基于图形识别的自动化测试技术
【TcaplusDB知识库】TcaplusDB常规单据介绍
TS common data types summary
Analysis of ble packet capturing debugging information
数据库-序列
Unity C# 网络学习(十)——UnityWebRequest(二)
夏令营来啦!!!冲冲冲
vsomeip3 双机通信文件配置
【TcaplusDB知识库】TcaplusDB单据受理-创建业务介绍
人力资源导出数据 excel VBA
Database - integrity constraints
Secure JSON protocol
Redis cluster messages
Unity C# 网络学习(九)——WWWFrom
The R language cartools package divides data, the scale function scales data, and the KNN function of the class package constructs a k-nearest neighbor classifier