当前位置:网站首页>First day of deep learning and tensorflow learning
First day of deep learning and tensorflow learning
2022-06-26 05:03:00 【Rain and dew touch the real king】
1. Linear regression
x: input data
F (x): prediction
Y: real data, ground One truth
F( x) Infinitesimal approach y best , error function loss = w* xi +b - yi The square of i Accumulation , send loss Function minimum
Minimize loss
W' *x+b' →y
边栏推荐
- Solution to back-off restarting failed container
- Modify the case of the string title(), upper(), lower()
- 【quartz】从数据库中读取配置实现动态定时任务
- 6.1 - 6.2 公钥密码学简介
- [geek] product manager training camp
- A method of quickly transplanting library function code to register code by single chip microcomputer
- 图像翻译/GAN:Unsupervised Image-to-Image Translation with Self-Attention Networks基于自我注意网络的无监督图像到图像的翻译
- Codeforces Round #802 (Div. 2)(A-D)
- 2022.2.16
- Machine learning final exercises
猜你喜欢
C# 39. string类型和byte[]类型相互转换(实测)
A method of quickly transplanting library function code to register code by single chip microcomputer
Record a circular reference problem
86. (cesium chapter) cesium overlay surface receiving shadow effect (gltf model)
Mise en œuvre du routage dynamique par zuul
1.18 learning summary
Rsync common error messages (common errors on the window)
LeetCode 19. Delete the penultimate node of the linked list
【Unity3D】人机交互Input
Ai+ remote sensing: releasing the value of each pixel
随机推荐
Multipass中文文档-设置驱动
Schematic diagram of UWB ultra high precision positioning system
ROS 笔记(07)— 客户端 Client 和服务端 Server 的实现
Multipass Chinese documents - improve mount performance
ROS notes (07) - Implementation of client and server
Numpy index and slice
UWB超高精度定位系统架构图
【Unity3D】刚体组件Rigidbody
ModuleNotFoundError: No module named ‘numpy‘
Multipass中文文档-提高挂载性能
Condition query
JWT token authentication verification
记录一次循环引用的问题
Is education important or ability important in software testing
Zuul 實現動態路由
86. (cesium chapter) cesium overlay surface receiving shadow effect (gltf model)
Simple application of KMP
【quartz】从数据库中读取配置实现动态定时任务
1.24 learning summary
1.21 learning summary