当前位置:网站首页>Introduction and use of precise ephemeris

Introduction and use of precise ephemeris

2022-06-23 05:16:00 Running Orange

Precise ephemeris

SP3 Precise ephemeris format , namely The Extended Standard Product 3 Orbit Format.

Precise ephemeris download

Click here to download the precise ephemeris
The following picture shows the download 2005-04-02 A precise ephemeris , So you can download the precise ephemeris of this day .
 Insert picture description here

Precise ephemeris format

#cP2009 4 1 0 0 0.00000000 96 ORBIT IGS05 BHN ESOC 
European Space Operations Centre
## 1525 259200.00000000   900.00000000 54922 0.0000000000000                    
+   48   G32G24G25G26G27G30G03G04G06G08G09G10G14G13G28G21G11                    
+        G22G20G18G16G19G23G02G31G17G12G15G29G07R04R06R07R10                    
+        R11R13R14R15R17R19R20R23R18R21R22R03R02R08  0  0  0                    
+          0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0                    
+          0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0                    
++         5  5  6  5  5  6  5  5  5  5  5  5  5  5  5  5  5                    
++         5  5  5  6  5  5  5  5  5  5  5  5  5  7  8  6  6                    
++         6  7  7  7  7  6  6  7  7  7  7  7  6  7  0  0  0                    
++         0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0                    
++         0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0                    
%c M  cc GPS ccc cccc cccc cccc cccc ccccc ccccc ccccc ccccc                    
%c cc cc ccc ccc cccc cccc cccc cccc ccccc ccccc ccccc ccccc                    
%f  0.0000000  0.000000000  0.00000000000  0.000000000000000                    
%f  0.0000000  0.000000000  0.00000000000  0.000000000000000                    
%i    0    0    0    0      0      0      0      0         0                    
%i    0    0    0    0      0      0      0      0         0                    
/* CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC /* CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC /* CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC /* PCV:IGS05_1461 OL/AL:FES2004 NONE YN ORB:CoN CLK:CoN * 2009 4 1 0 0 0.00000000 PG32 -8588.723867 -20090.643282 15669.151907 280.381686 PG24 22871.271694 12675.543847 -3627.944084 177.697220 ... ( Several lines are omitted here ) PR08 5808.861773 17946.260291 -17172.857334 -102.035201 * 2009 4 1 0 15 0.00000000 PG32 -8297.565626 -21671.755580 13538.952491 280.377529 PG24 22933.972419 13075.825862 -790.871026 177.700812 

Simple interpretation

#cP2009 4 1 0 0 0.00000000 96 ORBIT IGS05 BHN ESOC 
  • #c, edition

  • P, Pos/Vel Sign a

  • 2009 4 1 0 0 0.00000000, The year of the beginning of the precise ephemeris - month - Japan - when - branch - second

  • 96, Epoch number

  • IGS05
    http://acc.igs.org/igs-frames.html

  • ESOC, European Space Operations Centre

## 1525 259200.00000000   900.00000000 54922 0.0000000000000                    
  • 1525, GPS Zhou
  • 259200.00000000, GPS Seconds in a week
  • 900.00000000, Epoch interval Here is 900 second ,15 minute
  • 54922, Julian day
+   48   G32G24G25G26G27G30G03G04G06G08G09G10G14G13G28G21G11                    
+        G22G20G18G16G19G23G02G31G17G12G15G29G07R04R06R07R10                    
+        R11R13R14R15R17R19R20R23R18R21R22R03R02R08  0  0  0                    
  • 48, The number of satellites
  • G32…R08, Satellite number

more SP Format description click here

rtklib Precise ephemeris applications

rtklib Support the use of precise ephemeris , As you can see from the code below , We can use parameters by specifying ephemeris EPHOPT_PREC, In this way, when solving the satellite position , The precise ephemeris is used .

extern int satpos(gtime_t time, gtime_t teph, int sat, int ephopt,
                  const nav_t *nav, double *rs, double *dts, double *var,
                  int *svh)
{
    
    trace(4,"satpos : time=%s sat=%2d ephopt=%d\n",time_str(time,3),sat,ephopt);
    
    *svh=0;
    
    switch (ephopt) {
    
        case EPHOPT_BRDC  : return ephpos     (time,teph,sat,nav,-1,rs,dts,var,svh);
        case EPHOPT_SBAS  : return satpos_sbas(time,teph,sat,nav,   rs,dts,var,svh);
        case EPHOPT_SSRAPC: return satpos_ssr (time,teph,sat,nav, 0,rs,dts,var,svh);
        case EPHOPT_SSRCOM: return satpos_ssr (time,teph,sat,nav, 1,rs,dts,var,svh);
        case EPHOPT_PREC  :
            if (!peph2pos(time,sat,nav,1,rs,dts,var)) break; else return 1;
    }
    *svh=-1;
    return 0;
}

If we use it directly rtklib Compiled executable file for data processing , So in option Just set a precise ephemeris in the .
 Insert picture description here

Interpolation processing

The interval of precise ephemeris broadcasting is 15 minute , Therefore, interpolation processing is needed in practical application .rtklib Is used in Neville Interpolation method .

/* polynomial interpolation by Neville's algorithm ---------------------------*/
static double interppol(const double *x, double *y, int n)
{
    
    int i,j;
    
    for (j=1;j<n;j++) {
    
        for (i=0;i<n-j;i++) {
    
            y[i]=(x[i+j]*y[i]-x[i]*y[i+1])/(x[i+j]-x[i]);
        }
    }
    return y[0];
}

Neville Introduction to interpolation

Understand the direct skip of Neville interpolation

Neville Probably Not as well known as Newton and Lagrange interpolation , So here's a brief introduction . Neville interpolation is a method composed of two n-1 Construct an interpolation polynomial n Polynomial of degree Linear successive interpolation Method . What is linear successive interpolation ? Let's take five points as an example .
First , Use all the p i p_i pi and p i + 1 p_{i+1} pi+1, Such as p 0 p_0 p0 and p 1 p_1 p1 Linear interpolation , We get four first-order polynomials . Then, three second-order polynomials can be obtained by linear interpolation using four obtained first-order polynomials , Keep going like this , Get a fourth-order polynomial , This fourth-order polynomial passes through these five points .
 Insert picture description here
If it still feels a little abstract , Look directly at the example below . For three points (-1,0)(0,1)(1,0) Conduct 2 Order Neville interpolation , give the result as follows .
 Insert picture description here

Comparison between precise ephemeris solution and broadcast ephemeris

Precision ephemeris solution results

 Insert picture description here
 Insert picture description here

Broadcast ephemeris solution results

 Insert picture description here

 Insert picture description here

原网站

版权声明
本文为[Running Orange ]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/174/202206230127228321.html