当前位置:网站首页>Postgraduate entrance examination | advanced mathematics Chapter4 indefinite integral
Postgraduate entrance examination | advanced mathematics Chapter4 indefinite integral
2022-07-23 21:34:00 【Caffiny】
One's deceased father grind | Advanced mathematics Chapter4 Indefinite integral
List of articles
I. Definition
- Primitive function — If F ′ ( x ) = f ( x ) , F ( x ) be called f ( x ) Primitive function F'(x)=f(x), F(x) be called f(x) Primitive function F′(x)=f(x),F(x) be called f(x) Primitive function
- Indefinite integral — set up F ( x ) by f ( x ) A primitive function of , F ( x ) + C be called f ( x ) The indefinite integral of F(x) by f(x) A primitive function of , F(x)+C be called f(x) The indefinite integral of F(x) by f(x) A primitive function of ,F(x)+C be called f(x) The indefinite integral of
- Notes:
- if f ( x ) ∃ ⇒ ∃ f(x) \exists\ \ \Rightarrow\exists f(x)∃ ⇒∃ Countless primitive functions
- The difference between any two primitive functions is a constant
- if f ( x ) continuity ⇒ ∃ f(x) continuity \ \ \Rightarrow\ \ \exists f(x) continuity ⇒ ∃ Primitive function
II. Indefinite integral tool
a. The basic formula
- ∫ k d x = k x + C \int k dx=kx+C ∫kdx=kx+C
- power function
- ∫ x a d x = 1 a + 1 x a + 1 + C ; ( a ≠ 1 ) \int x^a dx=\frac{1}{a+1}x^{a+1}+C;\quad (a \neq 1) ∫xadx=a+11xa+1+C;(a=1)
- ∫ 1 x d x = ln ∣ x ∣ + C \int \frac1x dx=\ln |x|+C ∫x1dx=ln∣x∣+C
- Exponential function
- ∫ a x d x = a x ln a + C ; ( a ≠ 1 ) \int a^x dx=\frac{a^x}{\ln a} + C;\quad (a \neq 1) ∫axdx=lnaax+C;(a=1)
- ∫ 1 x d x = x + C \int 1^x dx=x+C ∫1xdx=x+C
- Trigonometric functions
∫ sin x d x = − cos x + C \int \sin x dx = -\cos x + C ∫sinxdx=−cosx+C ∫ cos x d x = sin x + C \int \cos x dx = \sin x + C ∫cosxdx=sinx+C ∫ tan x d x = − ln ∣ cos x ∣ + C \int \tan x dx = -\ln |\cos x| + C ∫tanxdx=−ln∣cosx∣+C ∫ cot x d x = ln ∣ sin x ∣ + C \int \cot x dx = \ln |\sin x| + C ∫cotxdx=ln∣sinx∣+C ∫ sec x d x = ln ∣ sec x + tan x ∣ + C \int \sec x dx = \ln |\sec x + \tan x| + C ∫secxdx=ln∣secx+tanx∣+C ∫ csc x d x = ln ∣ csc x − cot x ∣ + C \int \csc x dx = \ln |\csc x-\cot x| + C ∫cscxdx=ln∣cscx−cotx∣+C ∫ sec 2 x d x = tan x + C \int \sec ^2x dx = \tan x + C ∫sec2xdx=tanx+C ∫ csc 2 x d x = − cot x + C \int \csc ^2x dx = -\cot x + C ∫csc2xdx=−cotx+C ∫ sec ( tan x ) d x = sec x + C \int \sec (\tan x) dx = \sec x + C ∫sec(tanx)dx=secx+C ∫ csc x cot x d x = − csc x + C \int \csc x\cot x dx = -\csc x + C ∫cscxcotxdx=−cscx+C - Square sum square difference
∫ 1 1 − x 2 d x = arcsin x + C \int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C ∫1−x21dx=arcsinx+C ∫ 1 a 2 − x 2 d x = arcsin x a + C \int \frac{1}{\sqrt{a^2-x^2}} dx = \arcsin \frac xa + C ∫a2−x21dx=arcsinax+C ∫ 1 1 + x 2 d x = arctan x + C \int \frac1{1+x^2} dx = \arctan x + C ∫1+x21dx=arctanx+C ∫ 1 a 2 + x 2 d x = 1 a arctan x a + C \int \frac1{a^2+x^2} dx = \frac1a\arctan \frac xa + C ∫a2+x21dx=a1arctanax+C ∫ 1 x 2 + a 2 d x = ln ( x + x 2 + a 2 ) + C \int \frac1{\sqrt{x^2+a^2}} dx = \ln(x+\sqrt{x^2+a^2}) + C ∫x2+a21dx=ln(x+x2+a2)+C ∫ 1 x 2 − a 2 d x = ln ( x + x 2 − a 2 ) + C \int \frac1{\sqrt{x^2-a^2}} dx = \ln(x+\sqrt{x^2-a^2}) + C ∫x2−a21dx=ln(x+x2−a2)+C ∫ 1 x 2 − a 2 d x = 1 2 a ln ∣ x − a x + a ∣ + C \int \frac1{x^2-a^2} dx = \frac1{2a}\ln|\frac{x-a}{x+a}| + C ∫x2−a21dx=2a1ln∣x+ax−a∣+C ∫ a 2 − x d x = a 2 2 arcsin x a + x 2 a 2 − x 2 + C \int \sqrt{a^2-x} dx = \frac{a^2}{2}\arcsin\frac xa + \frac x2\sqrt{a^2-x^2} + C ∫a2−xdx=2a2arcsinax+2xa2−x2+C
b. Integral method
case1: The first kind of substitution integral method

case2: The second kind of transformation integral method
1. Irrational becomes rational

2. Triangular substitution , Square sum square difference
involves :
1. a 2 − x 2 ⇒ x = a sin t ⇒ a cos t \sqrt{a^2-x^2}\quad\Rightarrow\quad x=a\sin t \quad\Rightarrow\quad a\cos t a2−x2⇒x=asint⇒acost
2. a 2 + x 2 ⇒ x = a tan t ⇒ a sec t \sqrt{a^2+x^2}\quad\Rightarrow\quad x=a\tan t \quad\Rightarrow\quad a\sec t a2+x2⇒x=atant⇒asect
3. x 2 − a 2 ⇒ x = a sec t ⇒ a tan t \sqrt{x^2-a^2}\quad\Rightarrow\quad x=a\sec t \quad\Rightarrow\quad a\tan t x2−a2⇒x=asect⇒atant
3. Integration by parts
( u v ) ′ = u ′ v + u v ′ ∫ ( u v ) ′ d x = ∫ u ′ v d x + ∫ u v ′ d x u v = ∫ v d u + ∫ u d v ∫ u d v = u v − ∫ v d u \begin{aligned} (uv)'&=u'v+uv' \\ \int (uv)' dx &= \int u'v dx + \int uv'dx \\ uv &= \int v du + \int u dv \\ \int u dv &= uv - \int v du \end{aligned} (uv)′∫(uv)′dxuv∫udv=u′v+uv′=∫u′vdx+∫uv′dx=∫vdu+∫udv=uv−∫vdu
∫ power ∗ finger d x \int power * finger dx ∫ power ∗ finger dx, Left power function

∫ power ∗ logarithm d x \int power * logarithm dx ∫ power ∗ logarithm dx, Retention logarithm

∫ power ∗ Triangle d x \int power * Triangle dx ∫ power ∗ Triangle dx
Notes:- Trigonometric functions sin cos \sin\cos sincos It must be once

- If you encounter sin 2 cos 2 \sin^2\cos^2 sin2cos2 Reduce the degree with half angle formula
sin ( 2 x ) = 2 sin x cos x cos ( 2 x ) = cos 2 x + sin 2 x \sin(2x)=2\sin x\cos x \\\cos(2x)=\cos^2 x + \sin^2 x sin(2x)=2sinxcosxcos(2x)=cos2x+sin2x
- If you encounter tan cot sec cot \tan\cot\sec\cot tancotseccot Wait for an even number of times

- Trigonometric functions sin cos \sin\cos sincos It must be once
∫ power ∗ Anti triangle d x \int power * Anti triangle dx ∫ power ∗ Anti triangle dx, Leave inverse trigonometric function


∫ e a x ∗ sin b x \int e^{ax}*\sin bx ∫eax∗sinbx or ∫ e a x ∗ cos b x \int e^{ax}*\cos bx ∫eax∗cosbx, Leave trigonometric function

∫ sec n x d x \int \sec^nx dx ∫secnxdx or ∫ csc n x d x \int \csc^n xdx ∫cscnxdx, among n n n It's odd

∫ sec n x d x \int \sec^nx dx ∫secnxdx or ∫ csc n x d x \int \csc^n xdx ∫cscnxdx, among n n n For the even

III. Indefinite integral of special function
a. Rational functions
Definition : Integrand function R ( x ) R(x) R(x) Is a rational function , among R ( x ) = P ( x ) Q ( x ) R(x)=\frac{P(x)}{Q(x)} R(x)=Q(x)P(x), among P ( x ) Q ( x ) P(x)Q(x) P(x)Q(x) They are polynomials
When P ( x ) Maximum number of times < Q ( x ) Maximum number of times P(x) Maximum number of times < Q(x) Maximum number of times P(x) Maximum number of times <Q(x) Maximum number of times , R ( x ) R(x) R(x) Is the true fraction
When P ( x ) Maximum number of times ≥ Q ( x ) Maximum number of times P(x) Maximum number of times \geq Q(x) Maximum number of times P(x) Maximum number of times ≥Q(x) Maximum number of times , R ( x ) R(x) R(x) Is a false fraction
case1: False fraction
Ideas : take False fraction Turn into polynomial + True fraction 
case2: True fraction
Ideas : 1. Molecules do not move ; 2. Denominator factorization into partial sums 


b. Irrational function



c. Indefinite integral of trigonometric rational function

边栏推荐
- 【愚公系列】2022年06月 .NET架构班 084-微服务专题 Abp vNext微服务通信
- 合宙ESP32C3硬件配置信息串口打印输出
- 初识js(适合新手的编程)
- It's good to change jobs for a while, and it's good to change jobs all the time?
- Flink principle and development summary (detailed)
- Junior intern, ByteDance, after sharing, has been offered
- Typescript Basics
- & 9 nodemon automatic restart tool
- 寻找消失的类名
- Why cluster chat server introduces load balancer
猜你喜欢

欧氏聚类(API)及其单木分割

1309_ Add GPIO flip on STM32F103 and schedule test with FreeRTOS

Problems and abuse of protocol buffers

集群聊天服务器:集群与分布式理论

scala编程(中级进阶实验应用)

Serveur de chat de Cluster: conception de la table de base de données

Cluster chat server: creation of project directory

&9 nodemon自动重启工具

集群聊天服务器为什么引入负载均衡器
![[wechat applet] do you know about applet development?](/img/3d/da58255aeb6bf6bc5021d988906bcc.png)
[wechat applet] do you know about applet development?
随机推荐
The third slam Technology Forum - Professor wuyihong
Openlayers instance animated GIF GIF animation
The total ranking of blogs is 918
Chapter 2 回归
Summary of database stress testing methods
Day109. Shangyitong: integrate Nacos, hospital list, drop-down list query, hospital online function, hospital details query
寻找消失的类名
Is it safe to open a mobile stock account?
Unity - 3D mathematics -vector3
Day109.尚医通:集成Nacos、医院列表、下拉列表查询、医院上线功能、医院详情查询
分布式能源的不确定性——风速测试(Matlab代码实现)
Boost Filesystem使用手册
数据库压力测试方法小结
[create birthday card application]
如何在 pyqt 中实现桌面歌词
googletest
User manual of boost filesystem
Pay more attention to which securities company has the lowest commission? Is it safe to open an account online?
googletest
Typescript Basics