当前位置:网站首页>[2013] [paper notes] terahertz band nano particle surface enhanced Raman——

[2013] [paper notes] terahertz band nano particle surface enhanced Raman——

2022-07-23 18:45:00 Su Nianxin

Preface

type
Terahertz + scattering Terahertz + scattering Terahertz + scattering
Periodical
Spectroscopy and spectral analysis Spectroscopy and spectral analysis Spectroscopy and spectral analysis
author
Wu Yudeng , Ren Guangjun , Hao Yun , Yaojianquan Wu Yudeng , Ren Guangjun , Hao Yun , Yaojianquan Wu Yudeng , Ren Guangjun , Hao Yun , Yaojianquan
Time
2013 2013 2013



         \;\\\;\\\;

Surface enhanced Raman scattering SERS

When material molecules are adsorbed on some specific metal surfaces , The Raman scattering intensity of molecules will be greatly enhanced
( The enhancement factor can reach 1 0 3 ∼ 1 0 7 10^3\sim 10^7 103107

For nano scale rough surfaces , The enhancement of the signal can reach a million billion times

         \;\\\;\\\;

Raman scattering

The frequency of light wave changes after being scattered

         \;\\\;\\\;

Electromagnetic enhancement

Surface plasmon resonance SPR Local electromagnetic field enhancement caused
         \;\\\;\\\;

Chemical enhancement

There is charge transfer between the substrate and the adsorbed material
Mainly due to The polarizability of molecules adsorbed on rough surfaces changes The enhancement of Raman signal caused by .
         \;\\\;\\\;

research objective

1 Terahertz + Combination of low frequency Raman spectra

Intermolecular and intramolecular low-frequency stretching of some macromolecules 、 Bending vibration , Lattice phonon vibration , Hydrogen bond stretching 、 Torsional vibration
—— The corresponding absorption frequencies are distributed in THz Band

  • Terahertz has great application prospects in the detection of macromolecules

But macromolecules THz Research Absorption frequency

Low frequency Raman spectroscopy can reflect the vibration characteristics of macromolecules

SERS Surface enhanced Raman scattering can make THz Combined with low-frequency Raman spectroscopy

         \;\\\;\\\;

2 explain SERS

Is there anything else (2013) A complete theoretical explanation SERS( Surface enhanced Raman scattering ) Enhancement mechanism of

Recognized mechanism :
Based on surface plasmon theory Electromagnetic enhancement Mechanism + Based on charge transfer theory Chemical enhancement Mechanism

         \;\\\;\\\;

Research methods

Electromagnetic enhancement : Including the surface plasma model 、 Antenna resonator model 、 Mirror field model

Based on the above model, we can use FDTD Finite difference time domain , The simple results are simulated accurately

FDTD There are different expressions in different media

This paper discusses the surface strengthening effect of metal nanoparticles

Mesh scale : 0.5 n m × 0.5 n m 0.5nm\times 0.5nm 0.5nm×0.5nm
The number of grids : 200 × 200 200\times 200 200×200
Nanoparticles : gold Au Nanoparticles
Model : Plane model
Particle size : 20 n m 20nm 20nm
Incident wave : Plane linearly polarized wave

For different sizes of two particles 、 Simulate with different spacing

   \;
   \;
   \;

Research models

Metal nanoparticles are dispersive , use Drude The function represents its relative dielectric constant :
ε ( ω ) = 1 + ω p 2 ω ( i ν c − ω ) = 1 + χ ( ω ) \varepsilon(\omega) = 1 + \frac{\omega_p^2}{ \omega ( i \nu _c - \omega ) } = 1+ \chi (\omega) ε(ω)=1+ω(iνcω)ωp2=1+χ(ω)
among ω p \omega_p ωp Is the plasma frequency of dispersive medium , ν c \nu_c νc Is the plasma collision frequency of dispersive medium

   \;

Dispersive medium , Time domain
D ( t ) = ε ∞ ε 0 E ( t ) + ε 0 ∫ 0 t E ( t − τ ) ⋅ χ ( τ ) d τ D(t)=\varepsilon_{\infty} \varepsilon _0 E(t) + \varepsilon_0 \int_0^tE(t - \tau) \cdot \chi(\tau)d\tau D(t)=εε0E(t)+ε00tE(tτ)χ(τ)dτ
among χ ( τ ) \chi(\tau) χ(τ) Is the inverse Fourier transform of the polarization rate , ε ∞ \varepsilon_{\infty} ε yes ω → ∞ \omega \rightarrow \infty ω The relative permittivity of

   \;

Yee Coriolis grid
Use Yee The time is discretized by T-grid , t = n Δ t t=n\Delta t t=nΔt, be
D ( t ) ≈ D ( n Δ t ) = D n = ε ∞ ε 0 E n + ε 0 ∫ 0 n Δ t E ( n Δ t − τ ) ⋅ χ ( τ ) d τ D(t) \approx D(n\Delta t)=D^n=\varepsilon_{\infty} \varepsilon _0 E^n + \\\\\varepsilon_0\int_0^{n\Delta t}E(n\Delta t - \tau) \cdot \chi(\tau)d\tau D(t)D(nΔt)=Dn=εε0En+ε00nΔtE(nΔtτ)χ(τ)dτ
When t < 0 t<0 t<0 when , D ( t ) = E ( t ) = 0 D(t)=E(t)=0 D(t)=E(t)=0
Take the field value of each step as a constant , Yes
D n = ε ∞ ε 0 E n + ε 0 ∑ m = 0 n − 1 E n − m ⋅ ∫ m Δ t ( m + 1 ) Δ t χ ( τ ) d τ D^n=\varepsilon_{\infty} \varepsilon _0 E^n + \varepsilon_0\sum_{m=0}^{n-1}E^{n-m}\cdot \int_{m\Delta t}^{ (m+1)\Delta t } \chi(\tau)d\tau Dn=εε0En+ε0m=0n1EnmmΔt(m+1)Δtχ(τ)dτ
D n + 1 = ε ∞ ε 0 E n + 1 + ε 0 ∑ m = 0 n E n − m + 1 ⋅ ∫ m Δ t ( m + 1 ) Δ t χ ( τ ) d τ D^{n+1}=\varepsilon_{\infty} \varepsilon _0 E^{n+1} + \varepsilon_0\sum_{m=0}^{n}E^{n-m + 1}\cdot \int_{m\Delta t}^{ (m+1)\Delta t } \chi(\tau)d\tau Dn+1=εε0En+1+ε0m=0nEnm+1mΔt(m+1)Δtχ(τ)dτ

   \;

Isotropic metal medium
For isotropic metallic media , Yes
∇ × H = ∂ D / ∂ t ∇ × E = ∂ B / ∂ t B = μ H D = ε H \nabla \times H ={\partial D}/{\partial t} \\\\ \nabla \times E = {\partial B}/{\partial t} \\\\B=\mu H \\\\ D=\varepsilon H ×H=D/t×E=B/tB=μHD=εH
among μ and ε \mu and \varepsilon μ and ε They are the permeability and dielectric constant of dispersive medium

according to Yee Grid definition x = i Δ x , y = i Δ y , t = n Δ t x=i\Delta x, y=i\Delta y, t=n\Delta t x=iΔx,y=iΔy,t=nΔt, take D n And D n + 1 D^n And D^{n+1} Dn And Dn+1 Substituting into dispersive medium maxwell Fang Chengzhong , The electric field difference equation of dispersive medium is obtained :

E x n , s ( i , j ) = ε ∞ ε 0 ε ∞ ε 0 + σ Δ t + ε 0 χ 0 E x n − 1 , s ( i , j ) − σ Δ t ε ∞ ε 0 + σ Δ t + ε 0 χ 0 E x n , i ( i , j ) + ε 0 ε ∞ ε 0 + σ Δ t + ε 0 χ 0 Ψ x n ( i , j ) − ( ε ∞ − 1 ) ε 0 Δ t ε ∞ ε 0 + σ Δ t + ε 0 χ 0 ∂ E x n , i ( i + 1 / 2 , j ) ∂ t − ε 0 Δ t ε ∞ ε 0 + σ Δ t + ε 0 χ 0 ∂ ∂ t ∫ 0 n E x i ( t − τ ) χ ( τ ) d τ + Δ t ε ∞ ε 0 + σ Δ t + ε 0 χ 0 [ H z n − 1 / 2 , s ( i , j ) − H z n − 1 / 2 , s ( i , j − 1 ) Δ y ] E_x^{n,s}(i,j) = \frac{\varepsilon_{\infty} \varepsilon _0 }{ \varepsilon_{\infty} \varepsilon _0 + \sigma \Delta t + \varepsilon_0 \chi^0 } E_x^{n-1,s}(i,j) - \\\\ \frac{\sigma\Delta t}{\varepsilon_{\infty} \varepsilon _0 + \sigma \Delta t + \varepsilon_0 \chi^0} E_x^{n,i}(i,j) + \\\\ \frac{\varepsilon_0}{\varepsilon_{\infty} \varepsilon _0 + \sigma \Delta t + \varepsilon_0 \chi^0}\Psi _x^n(i,j ) - \\\\ \frac{( \varepsilon_{\infty} - 1 )\varepsilon_0 \Delta t }{\varepsilon_{\infty} \varepsilon _0 + \sigma \Delta t + \varepsilon_0 \chi^0} \frac{ \partial E_x^{n,i}(i+1/2,j) }{\partial t} - \\\\ \frac{ \varepsilon_0 \Delta t}{ \varepsilon_{\infty} \varepsilon _0 + \sigma \Delta t + \varepsilon_0 \chi^0 } \frac{\partial }{\partial t} \int_0^n E_x^i(t-\tau)\chi(\tau) d\tau + \\\\ \frac{ \Delta t }{ \varepsilon_{\infty} \varepsilon _0 + \sigma \Delta t + \varepsilon_0 \chi^0} [ \frac{H^{n-1/2,s}_z(i,j) - H^{n-1/2,s}_z(i,j-1)}{ \Delta y } ] Exn,s(i,j)=εε0+σΔt+ε0χ0εε0Exn1,s(i,j)εε0+σΔt+ε0χ0σΔtExn,i(i,j)+εε0+σΔt+ε0χ0ε0Ψxn(i,j)εε0+σΔt+ε0χ0(ε1)ε0ΔttExn,i(i+1/2,j)εε0+σΔt+ε0χ0ε0Δtt0nExi(tτ)χ(τ)dτ+εε0+σΔt+ε0χ0Δt[ΔyHzn1/2,s(i,j)Hzn1/2,s(i,j1)]

among
Ψ x n ( i , j ) = E s n ( i , j ) Δ χ 0 + Ψ x n − 1 ( i , j ) e − ν c Δ t \Psi_x^n(i,j)= E_s^n(i,j)\Delta \chi^0 + \Psi_x^{n-1}(i,j) e^{ - \nu_c \Delta t } Ψxn(i,j)=Esn(i,j)Δχ0+Ψxn1(i,j)eνcΔt

χ 0 = ω p 2 ν c Δ t − ( ω p ν c ) 2 [ 1 − e − ν c Δ t ] \chi^0=\frac{ \omega_p^2 }{ \nu_c }\Delta t - ( \frac{ \omega_p }{\nu_c} )^2 [1 - e^{-\nu_c\Delta t}] χ0=νcωp2Δt(νcωp)2[1eνcΔt]

Δ χ m = − ( ω p ν c ) 2 e − m ν c Δ t [ 1 − e − ν c Δ t ] 2 \Delta \chi^m=-( \frac{ \omega_p }{\nu_c} )^2 e^{ - m \nu_c \Delta t}[ 1 - e^{-\nu_c\Delta t} ]^2 Δχm=(νcωp)2emνcΔt[1eνcΔt]2

χ ( τ ) = ω p 2 ν c [ 1 − e − ν c τ ] U ( τ ) \chi(\tau)=\frac{ \omega_p^2 }{ \nu_c }[ 1 - e^{-\nu_c\tau} ]U(\tau) χ(τ)=νcωp2[1eνcτ]U(τ)

Through the above analysis, free space 、 Perfect matching layer 、 The surface electromagnetic enhancement of nanoparticles is simulated by setting dispersive media respectively

         \;\\\;\\\;

Analysis of simulation results

 Insert picture description here

Sure ? See the plane wave incident spectral enhancement factor ( ∣ E E 0 ∣ 2 |\frac{E}{E_0}|^2 E0E2) Concentrated at the junction and edge of the two nanoparticles , The enhancement of the junction reflects Interaction of nanoparticles under light wave irradiation Influence on the spectrum

         \;\\\;\\\;

Conclusion

By changing the different parameters of metal nanoparticles , Under the irradiation of terahertz wave , Different electromagnetic enhancement effects are obtained

  • It is proved that terahertz wave also has electromagnetic enhancement effect on the surface of metal nanoparticles

bring Surface enhanced Raman scattering SERS, From visible light + The infrared band is extended to THz Band

bring SERS Combined with terahertz wave Make it possible (2013)

         \;\\\;\\\;

problem

2022 Year now ,SERS And THz How is the combination ? What are the results ?

Right now SERS Has the reason for the mechanism been modified ?

Chemical enhancement and THz What are the combined results ?

         \;\\\;\\\;

原网站

版权声明
本文为[Su Nianxin]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/204/202207231626431019.html