当前位置:网站首页>math_ Summation and derivation of proportional series & derivation of sum and difference of equal powers / difference between two nth power numbers/
math_ Summation and derivation of proportional series & derivation of sum and difference of equal powers / difference between two nth power numbers/
2022-06-24 11:05:00 【xuchaoxin1375】
List of articles
math_ Sum and derivation of the sequence of proportional numbers & Derivation of sum and difference of equal powers / Two n Power difference
Two n Power difference & and

a n − b n = ( a − b ) ∑ i = 0 n − 1 a n − 1 − i b i a^{n}-b^{n}=(a-b) \sum_{i=0}^{n-1} a^{n-1-i}b^{i} an−bn=(a−b)i=0∑n−1an−1−ibi
among ,a Index and b The sum of the indices is n-1
- It is possible to obtain the deformation of the summation formula through the sequence of proportional numbers ( Dislocation subtraction )
Derivation of the summation formula of the equal ratio sequence
The sequence x n = a 1 , a 2 , a 3 , … , a n {x_n}=a_1,a_2,a_3,\dots ,a_n xn=a1,a2,a3,…,an(n term )
General formula x n = a 1 q n − 1 , ( n = 1 , 2 , 3 , … , n − 1 , n ) , branch other surface in Count Column Of The first 1 , 2 , 3 , . . . n term x_n=a_1q^{n-1},(n=1,2,3,\dots,n-1,n), Respectively represent the th... Of the sequence 1,2,3,...n term xn=a1qn−1,(n=1,2,3,…,n−1,n), branch other surface in Count Column Of The first 1,2,3,...n term
front n Xiang He :
S n = a 1 + a 2 + a 3 + ⋯ + a n − 1 + a n = a 1 q 0 + a 1 q 1 + ⋯ + a 1 q n − 1 = a 1 ( q 0 + q 1 + ⋯ + q n − 1 ) = a 1 ∑ i = 0 i = n − 1 q i S_n=a_1+a_2+a_3+\dots+a_{n-1}+a_n \\ =a_1q^0+a_1q^1+\dots+a_1q^{n-1} \\ =a_{1}(q^0+q^1+\dots+q^{n-1})=a_1\sum\limits_{i=0}^{i=n-1}q^i Sn=a1+a2+a3+⋯+an−1+an=a1q0+a1q1+⋯+a1qn−1=a1(q0+q1+⋯+qn−1)=a1i=0∑i=n−1qi
Special , When a1=0 when ,
S n = a 1 ∑ i = 0 i = n − 1 q i = 1 × ∑ i = 0 i = n − 1 q i = q 0 + q 1 + q 2 + ⋯ + q n − 1 can With use On PUSH guide etc. power and Bad Male type S_n=a_1\sum\limits_{i=0}^{i=n-1}q^i=1\times\sum\limits_{i=0}^{i=n-1}q^i =q^0+q^1+q^2+\dots+q^{n-1} \\ It can be used to derive the sum difference formula of equal powers Sn=a1i=0∑i=n−1qi=1×i=0∑i=n−1qi=q0+q1+q2+⋯+qn−1 can With use On PUSH guide etc. power and Bad Male type
In order to adopt
Subtraction by dislocationsolve , We also need q S n qS_n qSn, q S n = a 1 ( q 1 + q 2 + ⋯ + q n ) = a 1 ∑ i = 1 i = n q i qS_n=a_{1}(q^1+q^2+\dots+q^n)=a_1\sum\limits_{i=1}^{i=n}q^i qSn=a1(q1+q2+⋯+qn)=a1i=1∑i=nqiq S n − S n = a 1 ∑ i = 1 i = n q i − a 1 ∑ i = 0 i = n − 1 q i = a 1 ( ( ∑ i = 1 i = n − 1 q i + q n ) − ( q 0 + ∑ i = 1 i = n − 1 q i ) ) = a 1 ( q n − q 0 ) = a 1 ( q n − 1 ) qS_n-S_n \\ =a_1\sum\limits_{i=1}^{i=n}q^i-a_1\sum\limits_{i=0}^{i=n-1}q^i \\ =a_1((\sum\limits_{i=1}^{i=n-1}q^i+q^n)-(q^0+\sum\limits_{i=1}^{i=n-1}q^i)) \\ =a_1(q^n-q^0)=a_1(q^n-1) qSn−Sn=a1i=1∑i=nqi−a1i=0∑i=n−1qi=a1((i=1∑i=n−1qi+qn)−(q0+i=1∑i=n−1qi))=a1(qn−q0)=a1(qn−1)
S n ( q − 1 ) = a 1 ( q n − 1 ) S n = a 1 ( q n − 1 ) q − 1 O R a n o t h e r f o r m : S n = a 1 ( 1 − q n ) 1 − q S_n(q-1)=a_1(q^n-1) \\ S_n=\frac{a_1(q^n-1)}{q-1} \\OR\ another\ form: \\ S_n=\frac{a_1(1-q^n)}{1-q} Sn(q−1)=a1(qn−1)Sn=q−1a1(qn−1)OR another form:Sn=1−qa1(1−qn)
Derivation of equal power difference formula

Next, we prove the formula of equal power difference
It is known from the previous derivation that :
- Current first item a1=1 When , The isometric sequence degenerates into a simpler form :
S n = ∑ i = 0 i = n − 1 q i = q 0 + q 1 + q 2 + ⋯ + q n − 1 = q n − 1 q − 1 S_n=\sum\limits_{i=0}^{i=n-1}q^i =q^0+q^1+q^2+\dots+q^{n-1} \\ =\frac{q^n-1}{q-1} Sn=i=0∑i=n−1qi=q0+q1+q2+⋯+qn−1=q−1qn−1
Make q = a b q=\frac{a}{b} q=ba, Bring this formula into the above equation q:
S n = q n − 1 q − 1 = a n − b n b n − 1 ( a − b ) S_n=\frac{q^n-1}{q-1}=\frac{a^n-b^n}{b^{n-1}(a-b)} Sn=q−1qn−1=bn−1(a−b)an−bn
S n = ∑ i = 0 i = n − 1 q i = ∑ i = 0 i = n − 1 a i b i = ∑ i = 0 i = n − 1 a i b − i b n − 1 S n = b n − 1 ∑ i = 0 i = n − 1 a i b − i = ∑ i = 0 i = n − 1 a i b − i b n − 1 = ∑ i = 0 i = n − 1 a i b n − 1 − i a n − b n = b n − 1 S n ( a − b ) = ( a − b ) ∑ i = 0 i = n − 1 a i b n − 1 − i from seek and order Column Of Yes call sex : = ( a − b ) ∑ i = 0 i = n − 1 a n − 1 − i b i benefit use a Of finger Count and b Of finger Count and by c = ( a − b ) ∑ i = 1 i = n a n − i b i − 1 S_n=\sum\limits_{i=0}^{i=n-1}q^i=\sum\limits_{i=0}^{i=n-1}\frac{a^i}{b^i} \\ =\sum\limits_{i=0}^{i=n-1}{a^i}{b^{-i}} \\ b^{n-1}S_n=b^{n-1}\sum\limits_{i=0}^{i=n-1}{a^i}{b^{-i}} =\sum\limits_{i=0}^{i=n-1}{a^i}{b^{-i}}b^{n-1} =\sum\limits_{i=0}^{i=n-1}{a^i}{b^{n-1-i}} \\ a^n-b^n=b^{n-1}S_n(a-b) \\=(a-b)\sum\limits_{i=0}^{i=n-1}{a^i}{b^{n-1-i}} \\ By the symmetry of the summation sequence : \\=(a-b)\sum\limits_{i=0}^{i=n-1}{a^{n-1-i}}{b^i} \\ utilize a And b The sum of the indices of is c \\ =(a-b)\sum\limits_{i=1}^{i=n}a^{n-i}b^{i-1} Sn=i=0∑i=n−1qi=i=0∑i=n−1biai=i=0∑i=n−1aib−ibn−1Sn=bn−1i=0∑i=n−1aib−i=i=0∑i=n−1aib−ibn−1=i=0∑i=n−1aibn−1−ian−bn=bn−1Sn(a−b)=(a−b)i=0∑i=n−1aibn−1−i from seek and order Column Of Yes call sex :=(a−b)i=0∑i=n−1an−1−ibi benefit use a Of finger Count and b Of finger Count and by c=(a−b)i=1∑i=nan−ibi−1
Sum and difference of equal powers - Wikipedia , An encyclopedia of freedom (wikipedia.org)


边栏推荐
- [technical tutorial] national standard protocol platform easygbs cascading supports customized national standard channels
- Distribute proofs of manuscripts by scanning
- [IEEE publication] International Conference on natural language processing and information retrieval in 2022 (ecnlpir 2022)
- Tencent's open source project "Yinglong" has become a top-level project of Apache: the former long-term service wechat payment can hold a million billion level of data stream processing
- Today in history: Turing's birth day; The birth of the founder of the Internet; Reddit goes online
- 计组_cpu的结构和工作流程
- What is the function of the graphics card driver? Do you want to update the graphics card driver
- Niuke-top101-bm29
- Fashionable pop-up mode login registration window
- Detailed explanation of SQL Sever basic data types
猜你喜欢

Stack Title: exclusive time of function

機械臂速成小指南(二):機械臂的應用

Maui's way of learning -- Opening

SQL Server about like operator (including the problem of field data automatically filling in spaces)

“一个优秀程序员可抵五个普通程序员!”

Differences among cookies, session, localstorage and sessionstorage

【IEEE出版】2022年自然语言处理与信息检索国际会议(ECNLPIR 2022)

Cool interactive animation JS special effects implemented by p5.js
![[graduation season · attacking technology Er] three turns around the tree, what branch can we rely on?](/img/0a/0ebfa1e5c1bea6033b538528242252.png)
[graduation season · attacking technology Er] three turns around the tree, what branch can we rely on?

Visual presentation of pictures effectively enhances the attraction of large screen
随机推荐
Redis
Window function row in SQL Server_ number()rank()dense_ rank()
脚本之美│VBS 入门交互实战
Ppt drawing related, shortcut keys, aesthetics
09. Tencent cloud IOT device side learning -- RRPC and behavior
System design: key features of distributed systems
Pycharm shortcut keys
Maui's way of learning -- Opening
【IEEE出版】2022年自然语言处理与信息检索国际会议(ECNLPIR 2022)
图片的可视化呈现有效增强大屏吸引力
Many of my friends asked me what books and online classes I recommended. This time, I contributed all the materials that I had been hiding for a long time (Part 1)
Remote desktop copy paste exception
Four methods of object merging and four methods of object merging in JS
Differences among cookies, session, localstorage and sessionstorage
The record of 1300+ times of listing and the pursuit of ultimate happiness
Attribute observer didset and willset in swift of swiftui swift internal skill
"One good programmer is worth five ordinary programmers!"
[data analysis data source] coordinates of provinces, cities and administrative regions across the country (including boundary coordinate points and central coordinate points)
“一个优秀程序员可抵五个普通程序员!”
Multithreaded applications - improve efficiency