当前位置:网站首页>If xn > 0 and X (n+1) /xn > 1-1/n (n=1,2,...), Prove that the series Σ xn diverges

If xn > 0 and X (n+1) /xn > 1-1/n (n=1,2,...), Prove that the series Σ xn diverges

2022-06-27 07:50:00 Fish in the deep sea (・ ω& lt;)*

stem

if x n > 0 , And x n + 1 x n > 1 − 1 n    ( n = 1 , 2 , . . . ) , Prove bright level Count ∑ n = 1 ∞ x n Hair scattered if x_n>0, And \frac{x_{n+1}}{x_n}>1-\frac{1}{n}\,\,\left( n=1,2,... \right) , Prove the series \sum_{n=1}^{\infty}{x_n} Divergence if xn>0, And xnxn+1>1n1(n=1,2,...), Prove bright level Count n=1xn Hair scattered

answer

∵ x n + 1 x n > 1 − 1 n = n − 1 n \because \frac{x_{n+1}}{x_n}>1-\frac{1}{n}=\frac{n-1}{n} xnxn+1>1n1=nn1
∴ x 3 x 2 > 1 2   ,   x 4 x 3 > 2 3   ,   . . .   ,   x n x n − 1 > n − 2 n − 1 \therefore \frac{x_3}{x_2}>\frac{1}{2}\ ,\ \frac{x_4}{x_3}>\frac{2}{3}\ ,\ ...\ ,\ \frac{x_n}{x_{n-1}}>\frac{n-2}{n-1} x2x3>21 , x3x4>32 , ... , xn1xn>n1n2
∵ x n x n − 1 ⋅ x n − 1 x n − 2 ⋯ x 3 x 2 > n − 2 n − 1 ⋅ n − 3 n − 2 ⋯ 1 2 \because \frac{x_n}{x_{n-1}}\cdot \frac{x_{n-1}}{x_{n-2}}\cdots \frac{x_3}{x_2}>\frac{n-2}{n-1}\cdot \frac{n-3}{n-2}\cdots \frac{1}{2} xn1xnxn2xn1x2x3>n1n2n2n321
∴ x n x 2 > 1 n − 1   ( n > 3 ) \therefore \frac{x_n}{x_2}>\frac{1}{n-1}\ \left( n>3 \right) x2xn>n11 (n>3)
∴ x n > x 2 ⋅ 1 n − 1   ( n > 3 ) \therefore x_n>x_2\cdot \frac{1}{n-1}\ \left( n>3 \right) xn>x2n11 (n>3)
∴ ∑ n = 3 ∞ x n > x 2 ⋅ ∑ n = 2 ∞ 1 n \therefore \sum_{n=3}^{\infty}{x_n}>x_2\cdot \sum_{n=2}^{\infty}{\frac{1}{n}} n=3xn>x2n=2n1
because ∑ n = 2 ∞ 1 n Harmonic series , therefore ∑ n = 2 ∞ 1 n Divergence \text{ because }\sum_{n=2}^{\infty}{\frac{1}{n}}\text{ Harmonic series , therefore }\sum_{n=2}^{\infty}{\frac{1}{n}}\text{ Divergence } because n=2n1 Harmonic series , therefore n=2n1 Divergence
Harmonic series is also called p = 1 p=1 p=1 At the time of the p Series , Proof see Integral convergence method of positive term series ,p Convergence and divergence of series
∴ ∑ n = 3 ∞ x n Divergence ⇒ ∑ n = 1 ∞ x n Divergence   \therefore \sum_{n=3}^{\infty}{x_n}\text{ Divergence }\Rightarrow \sum_{n=1}^{\infty}{x_n}\text{ Divergence \ } n=3xn Divergence n=1xn Divergence  

原网站

版权声明
本文为[Fish in the deep sea (・ ω& lt;)*]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/178/202206270745477300.html