当前位置:网站首页>If xn > 0 and X (n+1) /xn > 1-1/n (n=1,2,...), Prove that the series Σ xn diverges
If xn > 0 and X (n+1) /xn > 1-1/n (n=1,2,...), Prove that the series Σ xn diverges
2022-06-27 07:50:00 【Fish in the deep sea (・ ω& lt;)*】
stem
if x n > 0 , And x n + 1 x n > 1 − 1 n ( n = 1 , 2 , . . . ) , Prove bright level Count ∑ n = 1 ∞ x n Hair scattered if x_n>0, And \frac{x_{n+1}}{x_n}>1-\frac{1}{n}\,\,\left( n=1,2,... \right) , Prove the series \sum_{n=1}^{\infty}{x_n} Divergence if xn>0, And xnxn+1>1−n1(n=1,2,...), Prove bright level Count n=1∑∞xn Hair scattered
answer
∵ x n + 1 x n > 1 − 1 n = n − 1 n \because \frac{x_{n+1}}{x_n}>1-\frac{1}{n}=\frac{n-1}{n} ∵xnxn+1>1−n1=nn−1
∴ x 3 x 2 > 1 2 , x 4 x 3 > 2 3 , . . . , x n x n − 1 > n − 2 n − 1 \therefore \frac{x_3}{x_2}>\frac{1}{2}\ ,\ \frac{x_4}{x_3}>\frac{2}{3}\ ,\ ...\ ,\ \frac{x_n}{x_{n-1}}>\frac{n-2}{n-1} ∴x2x3>21 , x3x4>32 , ... , xn−1xn>n−1n−2
∵ x n x n − 1 ⋅ x n − 1 x n − 2 ⋯ x 3 x 2 > n − 2 n − 1 ⋅ n − 3 n − 2 ⋯ 1 2 \because \frac{x_n}{x_{n-1}}\cdot \frac{x_{n-1}}{x_{n-2}}\cdots \frac{x_3}{x_2}>\frac{n-2}{n-1}\cdot \frac{n-3}{n-2}\cdots \frac{1}{2} ∵xn−1xn⋅xn−2xn−1⋯x2x3>n−1n−2⋅n−2n−3⋯21
∴ x n x 2 > 1 n − 1 ( n > 3 ) \therefore \frac{x_n}{x_2}>\frac{1}{n-1}\ \left( n>3 \right) ∴x2xn>n−11 (n>3)
∴ x n > x 2 ⋅ 1 n − 1 ( n > 3 ) \therefore x_n>x_2\cdot \frac{1}{n-1}\ \left( n>3 \right) ∴xn>x2⋅n−11 (n>3)
∴ ∑ n = 3 ∞ x n > x 2 ⋅ ∑ n = 2 ∞ 1 n \therefore \sum_{n=3}^{\infty}{x_n}>x_2\cdot \sum_{n=2}^{\infty}{\frac{1}{n}} ∴n=3∑∞xn>x2⋅n=2∑∞n1
because ∑ n = 2 ∞ 1 n Harmonic series , therefore ∑ n = 2 ∞ 1 n Divergence \text{ because }\sum_{n=2}^{\infty}{\frac{1}{n}}\text{ Harmonic series , therefore }\sum_{n=2}^{\infty}{\frac{1}{n}}\text{ Divergence } because n=2∑∞n1 Harmonic series , therefore n=2∑∞n1 Divergence
Harmonic series is also called p = 1 p=1 p=1 At the time of the p Series , Proof see Integral convergence method of positive term series ,p Convergence and divergence of series
∴ ∑ n = 3 ∞ x n Divergence ⇒ ∑ n = 1 ∞ x n Divergence \therefore \sum_{n=3}^{\infty}{x_n}\text{ Divergence }\Rightarrow \sum_{n=1}^{\infty}{x_n}\text{ Divergence \ } ∴n=3∑∞xn Divergence ⇒n=1∑∞xn Divergence
边栏推荐
- Windows下mysql-8下载、安装、配置教程
- Self test in the second week of major 4
- Websocket database listening
- 什么是期货反向跟单?
- JDBC操作Mysql示例
- Custom palette for ggplot2
- c#的初步认识
- 盲測調查顯示女碼農比男碼農更優秀
- JS uses the while cycle to calculate how many years it will take to grow from 1000 yuan to 5000 yuan if the interest rate for many years of investment is 5%
- 05 观察者(Observer)模式
猜你喜欢
【批处理DOS-CMD命令-汇总和小结】-输出/显示命令——echo
2. QT components used in the project
Testing network connectivity with the blackbox exporter
2022 love analysis · panoramic report of it operation and maintenance manufacturers
野风药业IPO被终止:曾拟募资5.4亿 实控人俞蘠曾进行P2P投资
Import and export database related tables from the win command line
win10-如何管理开机启动项?
cookie加密7 fidder分析阶段
Binary tree structure and heap structure foundation
How to view program running time (timer) in JS
随机推荐
c#的初步认识
Speech signal processing - concept (I): time spectrum (horizontal axis: time; vertical axis: amplitude), spectrum (horizontal axis: frequency; vertical axis: amplitude) -- Fourier transform -- > time
JDBC operation MySQL example
How can I import data from Oracle into fastdfs?
Testing network connectivity with the blackbox exporter
Installation and functions of uview
野风药业IPO被终止:曾拟募资5.4亿 实控人俞蘠曾进行P2P投资
JS use the switch statement to output the corresponding English day of the week according to 1-7
The 6th Blue Bridge Cup
Stream常用操作以及原理探索
js来打印1-100间的质数并求总个数优化版
Cookie encryption 7 fidder analysis phase
win命令行中导入、导出数据库相关表
盲测调查显示女码农比男码农更优秀
[compilation principles] review outline of compilation principles of Shandong University
【论文阅读】Intrinsically semi-supervised methods
Set the address book function to database maintenance, and add user name and password
[Software Engineering] software engineering review outline of Shandong University
(resolved) the following raise notimplementederror occurs when Minet tests
期货反向跟单—交易员的培训问题