当前位置:网站首页>NR Modulation 5

NR Modulation 5

2022-07-23 13:59:00 Bai Xiaosheng in Ming Dynasty

Reference resources

    Professor David S. Ricketts

Catalog

  1.     Quadrature Amplitude Modulation
  2.     cos vs sin 


One    Quadrature Amplitude Modulation

      1.1 advantage : Improved bandwidth efficiency

      1.2  Influencing factors : 

              Noise resistance   as well as power

       

    1.3  Constellations

      There are many kinds of constellations

      It mainly depends on

1: The minimum distance between any two points

            Affect the anti noise performance , The smaller the distance, the easier it is to make mistakes

2: Maximum distance

            Influence power , The greater the power consumption, the higher

 1.4 Example

          as follows 16-PSK  16-QAM

    One symbols It's all transmission 4bit, Consistent bandwidth efficiency

    however 16-PSK Higher power consumption . In practice , No one is better , Such as effective hardware limitations ,

In high frequency signal ,AM The modulation efficiency is very poor , At this time 16-PSK than

16-QAM Better

     


Two   cos vs sin

  2.1 cos w_c t   I

Theorem 1:  Important properties of Dirac function

 \int_{-\infty}^{\infty}\delta(x-x_0)f(x)dx=f(x_0)  

Theorem 2: Definition of inverse Fourier transform

f(t)=\frac{1}{2\pi}\int F(w)e^{jwt}dw

  According to the theorem 1,2 Yes  2\pi \delta (w-w_c)  Do the inverse Fourier transform

  \frac{1}{2\pi}\int_{-\infty}^{\infty} 2\pi \delta (w-w_c) e^{jwt}dw=\frac{2\pi}{2\pi}e^{jw_c}=e^{jw_ct}(t Is a constant )

be

       F(e^{jw_c t})=2\pi \delta (w-w_c)

because

   cos w_c t=\frac{e^{j w_c t}+e^{-j w_c t}}{2}

  =\frac{2\pi \delta (w-w_c)+2\pi \delta (w+w_c)}{2}

  =\pi(\delta (w-w_c)+\delta (w+w_c))

  Multiply the time domain by one cos Function is essentially equivalent to convolution in frequency domain , Convolution uses the properties of Dirac function

 

 

  Use the above properties   Assume that the input signal is f(w), Then the last output signal s(w) Namely , What you get is the last picture

    f(w)*\pi(\delta(w-w_{c_2})+\delta(w-w_{c_2}))=\pi(f(w-w_{c_2})+f(w+w_{c_2}))

 2.2 sin w_c t Q

    Actually, it's almost , One more. j

   

 

 2.3 quadrature modulation

   

    Finally, take a look at IQ modulation , All the way with cos Convolution , Follow all the way sin Convolution

The convoluted envelope is shown in the right figure .


3、 ... and cos vs sin

    The signal we originally sent , It's transformed into 4 Share copy.

The repeated part can be filtered out by a filter , Reduce power .

   3.1 cos vs sin

       cos wt=\frac{e^{jwt}+e^{-jwt}}{2}
      sin(wt)=cos(wt-\frac{\pi}{2})

              =\frac{e^{j(wt-\frac{\pi}{2})}+e^{j(wt+\frac{\pi}{2})}}{2}

            =\frac{-je^{jwt}+je^{-jwt}}{2}

          =\frac{e^{jwt}-e^{-jwt}}{2j}

3.2 Look again. sinw_ct

 <0 Part is equivalent to multiplying by one j, Did a flip

 >0 Multiply part by one -j, remain unchanged

 

 

 

 

原网站

版权声明
本文为[Bai Xiaosheng in Ming Dynasty]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/204/202207230735424727.html