当前位置:网站首页>Deep learning in finance in cross sectional sectional predictions for random forests

Deep learning in finance in cross sectional sectional predictions for random forests

2022-06-27 10:54:00 SyncStudy

Deep learning in finance in cross sectional sectional predictions for random forests

y i , t = α i , t − 1 + β i ′ y_{i,t}=\alpha_{i,t-1}+\beta'_{i} yi,t=αi,t1+βi

α i , t − 1 = g α , t ( x i , t − 1 ) \alpha_{i,t-1}=g_{\alpha,t}(x_{i,t-1}) αi,t1=gα,t(xi,t1)

y i , t + 1 ≈ y_{i,t+1} \approx yi,t+1

a N T = ϕ N T + η N T + b N T aNT=\phi NT+\eta NT+b NT aNT=ϕNT+ηNT+bNT

A s − B s ≈ G β , t ( X t − 1 ) ( f s − E f s ) A_s - B_s \approx G_{\beta,t}(X_{t-1})(f_s-\mathbb{E}f_s) AsBsGβ,t(Xt1)(fsEfs)

G β , t G_{\beta,t} Gβ,t

A s − B s ≈ G β , t ( f s − E f s ) A_s-B_s \approx G_{\beta, t}(f_s-\mathbb{E}f_s) AsBsGβ,t(fsEfs)

R t = X t , p ′ θ p + e t R_t = X'_{t,p}\theta_p+e_t Rt=Xt,pθp+et

R i s k ( p ) = 1 25 ∑ s = 1 25 ( R T + s − X T + s , p ′ Risk(p) = \frac{1}{25}\sum_{s=1}^{25}(R_{T+s} - X'_{T+s,p} Risk(p)=251s=125(RT+sXT+s,p

CRSP

1965-2018

one peridod head prediction

in sample decomposition- realized returns
κ \kappa κ

K \Kappa K

R y ^ 2 R_{\hat{y}}^2 Ry^2

R β ′ F 2 R_{\beta'F}^2 RβF2

R α 2 R^2_\alpha Rα2

R β ′ ( F + λ ) R_{\beta'(F+\lambda)} Rβ(F+λ)

R y ^ 2 ≈ R β R_{\hat{y}}^2 \approx R_{\beta} Ry^2Rβ

r ^ α , t = 1 N t g α ^ ′ y t ^ \hat{r}_{\alpha, t}=\frac{1}{N_t} \widehat{g_\alpha}^{'} \widehat{y_t} r^α,t=Nt1gαyt

K , R y ^ 2 K, R^2_{\hat{y}} K,Ry^2

原网站

版权声明
本文为[SyncStudy]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/178/202206271030408721.html

随机推荐