当前位置:网站首页>Uniform Asymptotics by Alexei

Uniform Asymptotics by Alexei

2022-06-27 10:54:00 SyncStudy

Uniform Asymptotics by Alexei

Empirical specification
l o g ( V o l ) = α 0 + [ β 1 + β 11 ∣ M ∣ + β 12 l o g ] log(Vol)=\alpha_0+[\beta_1+\beta_{11}|M|+\beta_{12}log] log(Vol)=α0+[β1+β11M+β12log]
tensor in days
KaTeX parse error: Undefined control sequence: \and at position 5: X=F\̲a̲n̲d̲' +\varepsilon

KaTeX parse error: Undefined control sequence: \and at position 2: \̲a̲n̲d̲'\and/N^\alpha …

N , T → ∞ N,T \rightarrow \infin N,T

N , T → ∞ N,T \rightarrow \infin N,T

T ≥ N 1 − 2 α T \ge N^{1-2\alpha} TN12α

α ∈ ( 0 , 1 / 2 ) \alpha \in (0,1/2) α(0,1/2)

ρ 2 = c o s 2 ∠ ( F ^ , F ) \rho^2=cos^2 \angle (\hat{F}, F) ρ2=cos2(F^,F)

F t ^ \hat{F_t} Ft^

KaTeX parse error: Undefined control sequence: \and at position 5: X=F\̲a̲n̲d̲'+\epsilon

F N ( 0 , 1 T ) F N(0,1_T) FN(0,1T)

ϵ N \epsilon N ϵN

KaTeX parse error: Undefined control sequence: \and at position 32: …=\frac{F(\frac{\̲a̲n̲d̲' \and}{n})F'}{…

F ^ = F + s m a l l \hat{F}=F+small F^=F+small

KaTeX parse error: Undefined control sequence: \and at position 5: ||F\̲a̲n̲d̲'||>>||\epsilon…

A = A 0 + s m a l l A=A_0+small A=A0+small

R = R 0 ( 1 + s m a l l R 0 ) − 1 = R 0 − R 0 ( s m a l l R 0 ) + R 0 ( s m a l l R 0 ) 2 − . . . R=R_0(1+small R_0)^{-1}=R_0-R_0(small R_0)+R_0(smallR_0)^2-... R=R0(1+smallR0)1=R0R0(smallR0)+R0(smallR0)2...

P = P 0 + s m a l l P ( 1 ) + ( s m a l l ) 2 P ( 2 ) + . . . P=P_0+smallP^{(1)}+(small)^2P^{(2)}+... P=P0+smallP(1)+(small)2P(2)+...

P = 1 2 π i ∮ R ( z ) d z P=\frac{1}{2\pi i} \oint R(z)dz P=2πi1R(z)dz

R ( z ) = 1 λ 1 − z P + 1 λ 2 − z w 2 v 2 ′ + . . . R(z)=\frac{1}{\lambda_1-z}P+\frac{1}{\lambda_2-z}w_2v_2'+... R(z)=λ1z1P+λ2z1w2v2+...

A = X X ′ T n A=\frac{XX'}{Tn} A=TnXX

A 0 = F F ′ / T A_0=FF'/T A0=FF/T

KaTeX parse error: Undefined control sequence: \and at position 35: …psilon||^2}{||F\̲a̲n̲d̲'||^2}=\frac{N+…

ρ 2 = t r [ P P 0 ] = 1 + 1 n t r [ P ( 1 ) P 0 ] + 1 n 2 t r [ P ( 2 ) P 0 ] \rho^2=tr[PP_0]=1+\frac{1}{n}tr[P^{(1)}P_0]+\frac{1}{n^2}tr[P^{(2)}P_0] ρ2=tr[PP0]=1+n1tr[P(1)P0]+n21tr[P(2)P0]

t r [ P ( j ) ] tr[P^{(j)}] tr[P(j)]

T ( n ( ρ 2 − 1 ) − μ 1 ) = T ( t r [ P ( 1 ) P 0 ] − μ 1 ) + T 1 \sqrt{T}(n(\rho^2-1)-\mu_1)=\sqrt{T}(tr[P^{(1)}P_0]-\mu_1)+\frac{\sqrt{T}}{1} T(n(ρ21)μ1)=T(tr[P(1)P0]μ1)+1T

T < < n j * α > 1 2 j \sqrt{T} << n^j \Longleftrightarrow \alpha >\frac{1}{2j} T<<nj*α>2j1

X X ′ XX' XX

KaTeX parse error: Undefined control sequence: \and at position 3: F\̲a̲n̲d̲'\and F'

X X ′ XX' XX

ϵ ϵ ′ \epsilon\epsilon' ϵϵ

KaTeX parse error: Undefined control sequence: \and at position 7: XX'=F\̲a̲n̲d̲'\and F'+small=…

X X ′ = l o w r a n k + ϵ ϵ ′ = g XX'=low rank +\epsilon\epsilon'=g XX=lowrank+ϵϵ=g

( A + f f ′ − z ) − 1 = R ( z ) − R ( z ) f f ′ R ( z ) 1 + f ′ R ( z ) f (A+ff'-z)^{-1}=R(z)-\frac{R(z)ff'R(z)}{1+f'R(z)f} (A+ffz)1=R(z)1+fR(z)fR(z)ffR(z)

1 + f ′ R ( λ ^ ) f = 0 1+f'R(\hat{\lambda})f=0 1+fR(λ^)f=0

( f ′ f ^ ) 2 = 1 / f ′ R ( λ ^ ) (f'\hat{f})^2=1/f'R(\hat{\lambda}) (ff^)2=1/fR(λ^)

X X ′ N T = n + 1 N T F F ′ + u u ′ N T \frac{XX'}{\sqrt{NT}}=\frac{n+1}{\sqrt{NT}}FF'+\frac{uu'}{\sqrt{NT}} NTXX=NTn+1FF+NTuu

A = u u ′ / N T A=uu'/\sqrt{NT} A=uu/NT

f = n + 1 ( N T ) 1 4 f=\frac{\sqrt{n+1}}{(NT)^{\frac{1}{4}}} f=(NT)41n+1

F ′ R ( λ ^ ) T F F'\frac{R(\hat{\lambda})}{T}F FTR(λ^)F

= − 1 c ( c + 1 ) =-\frac{1}{\sqrt{c}(c+1)} =c(c+1)1

− 1 -\frac{1}{} 1

λ 0 = 1 c + c + 1 c n + c n \lambda_0=\frac{1}{\sqrt{c}}+\sqrt{c}+\frac{1}{\sqrt{c}n}+\sqrt{c}n λ0=c1+c+cn1+cn

n n + 1 T / 2 \frac{n}{n+1}\sqrt{\frac{T/2}{}} n+1nT/2

KaTeX parse error: Undefined control sequence: \and at position 2: \̲a̲n̲d̲'\and=\frac{1+\…

KaTeX parse error: Undefined control sequence: \and at position 2: \̲a̲n̲d̲'\and=\sum N^\a…

c n − 1 > K 1 \sqrt{c}n-1>K^{1} cn1>K1

c n − 1 > 1 \sqrt{c}n-1>1 cn1>1

c n − 1 < < 1 \sqrt{c}n-1 <<1 cn1<<1

c n − 1 > > K − 1 / 3 \sqrt{c}n-1>>K^{-1/3} cn1>>K1/3

c n − 1 ∼ K − 1 / 3 \sqrt{c}n-1 \sim K^{-1/3} cn1K1/3

Three factors

critical

critical a weak factor

critical point

sorted
ρ 2 = ( F ′ R ( λ ^ ) F ) 2 ( F ′ F ) ( F ′ R 2 ( λ ^ ) F ) \rho^2=\frac{(F'R(\hat{\lambda})F)^2}{(F'F)(F'R^2(\hat{\lambda})F)} ρ2=(FF)(FR2(λ^)F)(FR(λ^)F)2

c n 2 − 1 > K − 1 / 3 + ω cn^2-1>K^{-1/3+\omega} cn21>K1/3+ω

ρ 2 / ρ 0 2 → 1 \rho^2/\rho_0^2 \rightarrow1 ρ2/ρ021

ρ 0 2 = 1 2 \rho_0^2=\frac{1}{2} ρ02=21

1 + ∑ j = 1 ∞ μ j / n j = ρ 0 2 1+\sum_{j=1}^{\infin} \mu_j/n^j=\rho_0^2 1+j=1μj/nj=ρ02

T n ( ρ 2 − ρ 0 2 ) \sqrt{T}n(\rho^2-\rho_0^2) Tn(ρ2ρ02)

T = 250 , N = 1000 T=250, N=1000 T=250,N=1000

$$

$$

t r 1 T R ( z ) = tr\frac{1}{T}R(z)= trT1R(z)=

l o c a l − s e m i c i r c l e − l a w local-semicircle-law localsemicirclelaw

α ∈ ( 0 , 1 ) \alpha \in (0,1) α(0,1)

α = − 1 / 3 \alpha = -1/3 α=1/3

∑ ∈ R \sum \in \mathbb{R} R

α = − 1 / 3 \alpha = -1/3 α=1/3

∑ ∈ R \sum \in \mathbb{R} R

C o n v e r g e n c e Convergence Convergence

原网站

版权声明
本文为[SyncStudy]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/178/202206271030408579.html