当前位置:网站首页>Industrial and enterprise patent matching data (hundreds of thousands of data) 1998-2014
Industrial and enterprise patent matching data (hundreds of thousands of data) 1998-2014
2022-06-26 09:27:00 【samFuB】
1、 Data sources : National bureau of statistics ( Industrial enterprise data )、 Patent data comes from the State Intellectual Property Office
2、 time span :1998-2014
3、 Regional scope : The national
4、 Indicator description :
Include the following indicators :
Open ( Notice ) Japan 、 Application date 、 Main classification number 、 Classification number 、 Divisional original application No 、 Priority 、 apply ( patent right ) people 、 Address 、 Patent agency 、 The agent 、 the number of pages 、 Country and province code 、 Application number 、 Public number
How to match :
- First step , reference Brandt(2012) The method of processing industrial and enterprise data and patent data ;
- The second step , Match the enterprise name and year with the patent data ;
- The third step , Match with patent data according to organization code and year ;
- Step four , Merge second 、 Three step matching data , And remove the weight ;
- Final , We get any enterprise that satisfies the matching of step 2 or step 3 .
5、 Partial data screenshot :
Related research :
[1] Qian Junlong . Game analysis of rent-seeking behavior in import and export trade [J]. Statistical research , 2005.
[2] Sheng Zhonglin , He Weida . Research on implied carbon emissions in China's import and export trade [J]. Exploration of economic problems , 2016, 000(009):110-116.
[3] Zhao Jingmin . Research on the competitiveness and complementarity of China's international trade structure [J]. Journal of Yunnan University of Finance and economics , 2017(3).
[4] Chen Wen , Chen Ming , Shi Jiaming , etc. . Labor Cost, Import Substitution and Innovation of Exporting Enterprises% Labor costs 、 Import substitution and innovation behavior of export enterprises [J]. International trade issues , 2019, 000(007):19-32.
Download link : Industrial enterprise patent matching data .zip- Dataset document class resources -CSDN download
边栏推荐
- Practice of production control | dilemma on assembly rack
- Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-ID
- Router bridging settings
- Runtimeerror: object has no attribute NMS error record when using detectron2
- Understanding of swing transformer
- 2021年全国职业院校技能大赛(中职组)网络安全竞赛试题(1)详细解析教程
- Detectron2 save (according to maxap50) model during training_ best. PTH weight
- Principle and application of single chip microcomputer -- Overview
- Merrill Lynch data helps State Grid Hubei "golden eye" accurately identify abnormal power consumption
- Pycharm occasionally encounters low disk space
猜你喜欢
《一周搞定数电》-逻辑门
【AAAI 2021】Few-Shot One-Class Classification via Meta-Learning 【FSOCC via Meta-learning】
xsync同步脚本的创建及使用(以Debian10集群为例)
Classified catalogue of high quality sci-tech periodicals in the field of computing
常用电路设计
0 basic how to make a cool leadership cockpit?
"One week's data collection" - logic gate
Bbox format conversion (detectron2 function library)
"One week to solve the model electricity" - negative feedback
Badge collection 6:api\_ Use of level
随机推荐
The shutter tabbar listener is called twice
Merrill Lynch data technology expert team | application of recommendation of relevant contents in group system data retrieval
A Style-Based Generator Architecture for Generative Adversarial Networks
Jetson TX2 installing the SciPy Library
全面解读!Golang中泛型的使用
JSON file to XML file
Tutorial 1:hello behavioc
Analysis of ROS calculation diagram level
"One week's work on Analog Electronics" - power amplifier
Comprehensive interpretation! Use of generics in golang
thinkphp5手动报错
Introduction to QPM
Detectron2 draw confusion matrix, PR curve and confidence curve
Origin of QPM
计算领域高质量科技期刊分级目录
Merrill Lynch data tempoai is new!
Pycharm occasionally encounters low disk space
"One week's work on Analog Electronics" - optocoupler and other components
Self taught programming series - 2 file path and text reading and writing
Self learning neural network series - 8 feedforward neural networks