当前位置:网站首页>A^2=e | the solution of the equation | what exactly can this equation tell us

A^2=e | the solution of the equation | what exactly can this equation tell us

2022-06-27 03:33:00 Mo Yu '

if A 2 = E A^2=E A2=E

Lemma one

if A 2 = E A^2=E A2=E be A A A The characteristic value of can only be 1 1 1 or − 1 -1 1

prove :

set up A A A The eigenvalue of is λ \lambda λ, The corresponding eigenvector is η \eta η. therefore

A 2 η = A A η = A λ η = λ A η = λ 2 η A^2\eta=AA\eta=A\lambda \eta=\lambda A\eta=\lambda^2\eta A2η=AAη=Aλη=λAη=λ2η

and

A 2 η = E 2 η = η A^2\eta=E^2\eta=\eta A2η=E2η=η

thus

λ 2 = 1 \lambda^2=1 λ2=1

Lemma II

If A 2 = E A^2=E A2=E be r ( A + E ) + r ( A − E ) = n {\rm r}(A+E)+{\rm r}(A−E)=n r(A+E)+r(AE)=n
Some inequalities about rank


By the lemma 12 know , A A A The eigenvalue of is 1 1 1 or − 1 -1 1, And r ( A + E ) + r ( A − E ) = n r(A+E)+r(A-E)=n r(A+E)+r(AE)=n

From the knowledge of eigenvectors, we can know , The eigenvalue 1 1 1 The dimension of the corresponding eigenvector space is equal to n − r ( A − E ) n-r(A-E) nr(AE), The eigenvalue − 1 -1 1 The dimension of the corresponding eigenvector space is equal to n − r ( A + E ) n-r(A+E) nr(A+E). Because the eigenvalue is only 1 and -1, therefore A A A The number of linearly independent eigenvectors of is n − r ( A − E ) + n − r ( A + E ) = n n-r(A-E)+n-r(A+E)=n nr(AE)+nr(A+E)=n explain A A A Diagonalize .

therefore , There are invertible matrices P P P, bring

P − 1 A P = B P^{-1}AP=B P1AP=B

B B B It's a diagonal matrix , Diagonal element by 1 1 1 and − 1 -1 1 form , share r ( A − E ) {\rm r}(A-E) r(AE) individual 1 1 1, r ( A + E ) {\rm r}(A+E) r(A+E) individual − 1 -1 1.

therefore A A A Can write P B P − 1 PBP^{-1} PBP1 Any matrix of . among B = d i a g ( 1 , 1 , ⋯   , 1 , − 1 , − 1 , ⋯   , − 1 ) B={\rm diag}(1,1,\cdots,1,-1,-1,\cdots,-1) B=diag(1,1,,1,1,1,,1), r ( A − E ) {\rm r}(A-E) r(AE) individual 1 1 1, r ( A + E ) {\rm r}(A+E) r(A+E) individual − 1 -1 1, P P P Is an arbitrary invertible matrix .

in fact , set up A = P B P − 1 A=PBP^{-1} A=PBP1, be A 2 = P B P − 1 P B P − 1 = P B B P − 1 = P E P − 1 = E A^2=PBP^{-1}PBP^{-1}=PBBP^{-1}=PEP^{-1}=E A2=PBP1PBP1=PBBP1=PEP1=E


2022 year 6 month 22 Japan 19:09:22

原网站

版权声明
本文为[Mo Yu ']所创,转载请带上原文链接,感谢
https://yzsam.com/2022/178/202206270326323567.html