当前位置:网站首页>A^2=e | the solution of the equation | what exactly can this equation tell us
A^2=e | the solution of the equation | what exactly can this equation tell us
2022-06-27 03:33:00 【Mo Yu '】
if A 2 = E A^2=E A2=E
Lemma one
if A 2 = E A^2=E A2=E be A A A The characteristic value of can only be 1 1 1 or − 1 -1 −1
prove :
set up A A A The eigenvalue of is λ \lambda λ, The corresponding eigenvector is η \eta η. therefore
A 2 η = A A η = A λ η = λ A η = λ 2 η A^2\eta=AA\eta=A\lambda \eta=\lambda A\eta=\lambda^2\eta A2η=AAη=Aλη=λAη=λ2η
and
A 2 η = E 2 η = η A^2\eta=E^2\eta=\eta A2η=E2η=η
thus
λ 2 = 1 \lambda^2=1 λ2=1
Lemma II
If A 2 = E A^2=E A2=E be r ( A + E ) + r ( A − E ) = n {\rm r}(A+E)+{\rm r}(A−E)=n r(A+E)+r(A−E)=n
Some inequalities about rank
By the lemma 12 know , A A A The eigenvalue of is 1 1 1 or − 1 -1 −1, And r ( A + E ) + r ( A − E ) = n r(A+E)+r(A-E)=n r(A+E)+r(A−E)=n
From the knowledge of eigenvectors, we can know , The eigenvalue 1 1 1 The dimension of the corresponding eigenvector space is equal to n − r ( A − E ) n-r(A-E) n−r(A−E), The eigenvalue − 1 -1 −1 The dimension of the corresponding eigenvector space is equal to n − r ( A + E ) n-r(A+E) n−r(A+E). Because the eigenvalue is only 1 and -1, therefore A A A The number of linearly independent eigenvectors of is n − r ( A − E ) + n − r ( A + E ) = n n-r(A-E)+n-r(A+E)=n n−r(A−E)+n−r(A+E)=n explain A A A Diagonalize .
therefore , There are invertible matrices P P P, bring
P − 1 A P = B P^{-1}AP=B P−1AP=B
B B B It's a diagonal matrix , Diagonal element by 1 1 1 and − 1 -1 −1 form , share r ( A − E ) {\rm r}(A-E) r(A−E) individual 1 1 1, r ( A + E ) {\rm r}(A+E) r(A+E) individual − 1 -1 −1.
therefore A A A Can write P B P − 1 PBP^{-1} PBP−1 Any matrix of . among B = d i a g ( 1 , 1 , ⋯ , 1 , − 1 , − 1 , ⋯ , − 1 ) B={\rm diag}(1,1,\cdots,1,-1,-1,\cdots,-1) B=diag(1,1,⋯,1,−1,−1,⋯,−1), r ( A − E ) {\rm r}(A-E) r(A−E) individual 1 1 1, r ( A + E ) {\rm r}(A+E) r(A+E) individual − 1 -1 −1, P P P Is an arbitrary invertible matrix .
in fact , set up A = P B P − 1 A=PBP^{-1} A=PBP−1, be A 2 = P B P − 1 P B P − 1 = P B B P − 1 = P E P − 1 = E A^2=PBP^{-1}PBP^{-1}=PBBP^{-1}=PEP^{-1}=E A2=PBP−1PBP−1=PBBP−1=PEP−1=E
2022 year 6 month 22 Japan 19:09:22
边栏推荐
- Anaconda3安裝過程及安裝後缺失大量文件,沒有scripts等目錄
- 人群模拟
- 2021:Greedy Gradient Ensemble for Robust Visual Question Answering
- 2021:passage retrieval for outside knowledgevisual question answering
- jmeter将上一个请求的结果作为下一个请求的参数
- PAT甲级 1019 General Palindromic Number
- Questions and answers of chlor alkali electrolysis process in 2022
- 流沙画模拟器源码
- PAT甲级 1024 Palindromic Number
- TP5 spreadsheet excel table export
猜你喜欢

记录unity 自带读取excel的方法和遇到的一些坑的解决办法

Uni app's uparse rich text parsing perfectly parses rich text!

Cvpr2021:separating skills and concepts for new visual question answering

Anaconda3安裝過程及安裝後缺失大量文件,沒有scripts等目錄

2021:Greedy Gradient Ensemble for Robust Visual Question Answering

Brief introduction of 228 dropout methods of pytorch and fast implementation of dropblock with 4 lines of code based on dropout

事业观、金钱观与幸福观
![Promise source code class version [III. promise source code] [detailed code comments / complete test cases]](/img/51/e1c7d5a7241a6eca6c179ac2cb9088.png)
Promise source code class version [III. promise source code] [detailed code comments / complete test cases]
![[Shangshui Shuo series] day 6](/img/47/7cd44f4e361af53cac7cea9d0d7ecb.png)
[Shangshui Shuo series] day 6

TopoLVM: 基于LVM的Kubernetes本地持久化方案,容量感知,动态创建PV,轻松使用本地磁盘
随机推荐
解码苹果手机证书文件方法
Logarithm
Getting started with Scala_ Immutable list and variable list
Overview of Tsinghua & Huawei | semantic communication: Principles and challenges
NestJS环境变量配置,解决如何在拦截器(interceptor)注入服务(service)的问题
【promise一】promise的介绍与手撸的关键问题
静态时序分析-OCV和time derate
2022 operation of simulated examination platform for tea artist (Senior) work license question bank
Cs5213 HDMI to VGA (with audio) single turn scheme, cs5213 HDMI to VGA (with audio) IC
PAT甲级 1024 Palindromic Number
2021:adavqa: overlapping language priors with adapted margin cosine loss *
超级详细,2 万字详解,吃透 ES!
敏捷开发篇--Agile Development-自用
Promise [II. Promise source code] [detailed code comments / complete test cases]
fplan-电源规划
[micro service sentinel] degradation rules slow call proportion abnormal proportion abnormal constant
Test the respective roles of nohup and &
流沙画模拟器源码
How does source insight (SI) display the full path? (do not display omitted paths) (turn off trim long path names with ellipses)
Learn Tai Chi maker mqtt (IX) esp8266 subscribe to and publish mqtt messages at the same time