当前位置:网站首页>A^2=e | the solution of the equation | what exactly can this equation tell us
A^2=e | the solution of the equation | what exactly can this equation tell us
2022-06-27 03:33:00 【Mo Yu '】
if A 2 = E A^2=E A2=E
Lemma one
if A 2 = E A^2=E A2=E be A A A The characteristic value of can only be 1 1 1 or − 1 -1 −1
prove :
set up A A A The eigenvalue of is λ \lambda λ, The corresponding eigenvector is η \eta η. therefore
A 2 η = A A η = A λ η = λ A η = λ 2 η A^2\eta=AA\eta=A\lambda \eta=\lambda A\eta=\lambda^2\eta A2η=AAη=Aλη=λAη=λ2η
and
A 2 η = E 2 η = η A^2\eta=E^2\eta=\eta A2η=E2η=η
thus
λ 2 = 1 \lambda^2=1 λ2=1
Lemma II
If A 2 = E A^2=E A2=E be r ( A + E ) + r ( A − E ) = n {\rm r}(A+E)+{\rm r}(A−E)=n r(A+E)+r(A−E)=n
Some inequalities about rank
By the lemma 12 know , A A A The eigenvalue of is 1 1 1 or − 1 -1 −1, And r ( A + E ) + r ( A − E ) = n r(A+E)+r(A-E)=n r(A+E)+r(A−E)=n
From the knowledge of eigenvectors, we can know , The eigenvalue 1 1 1 The dimension of the corresponding eigenvector space is equal to n − r ( A − E ) n-r(A-E) n−r(A−E), The eigenvalue − 1 -1 −1 The dimension of the corresponding eigenvector space is equal to n − r ( A + E ) n-r(A+E) n−r(A+E). Because the eigenvalue is only 1 and -1, therefore A A A The number of linearly independent eigenvectors of is n − r ( A − E ) + n − r ( A + E ) = n n-r(A-E)+n-r(A+E)=n n−r(A−E)+n−r(A+E)=n explain A A A Diagonalize .
therefore , There are invertible matrices P P P, bring
P − 1 A P = B P^{-1}AP=B P−1AP=B
B B B It's a diagonal matrix , Diagonal element by 1 1 1 and − 1 -1 −1 form , share r ( A − E ) {\rm r}(A-E) r(A−E) individual 1 1 1, r ( A + E ) {\rm r}(A+E) r(A+E) individual − 1 -1 −1.
therefore A A A Can write P B P − 1 PBP^{-1} PBP−1 Any matrix of . among B = d i a g ( 1 , 1 , ⋯ , 1 , − 1 , − 1 , ⋯ , − 1 ) B={\rm diag}(1,1,\cdots,1,-1,-1,\cdots,-1) B=diag(1,1,⋯,1,−1,−1,⋯,−1), r ( A − E ) {\rm r}(A-E) r(A−E) individual 1 1 1, r ( A + E ) {\rm r}(A+E) r(A+E) individual − 1 -1 −1, P P P Is an arbitrary invertible matrix .
in fact , set up A = P B P − 1 A=PBP^{-1} A=PBP−1, be A 2 = P B P − 1 P B P − 1 = P B B P − 1 = P E P − 1 = E A^2=PBP^{-1}PBP^{-1}=PBBP^{-1}=PEP^{-1}=E A2=PBP−1PBP−1=PBBP−1=PEP−1=E
2022 year 6 month 22 Japan 19:09:22
边栏推荐
- Regular expressions: Syntax
- ORM cache package for laravel
- 语义化版本 2.0.0
- 2019LXMERT:Learning Cross-Modality Encoder Representations from Transformers
- 通信中的机器学习最佳阅读资料列表
- fplan-布局
- Yuantou firm offer weekly record 20220627
- 苹果唯一图谱架构常识
- Solve the problem of error reporting in cherry pick submission
- 2016Analyzing the Behavior of Visual Question Answering Models
猜你喜欢
Docker deploy redis cluster
Learn Tai Chi Maker - mqtt (VI) esp8266 releases mqtt message
2021:AdaVQA: Overcoming Language Priors with Adapted Margin Cosine Loss∗自适应的边缘余弦损失解决语言先验
There are two problems when Nacos calls microservices: 1 Load balancer does not contain an instance for the service 2. Connection refused
一文教你Kali信息收集
2019LXMERT:Learning Cross-Modality Encoder Representations from Transformers
PAT甲级 1018 Public Bike Management
Qingscan use
Pat class a 1024 palindromic number
PAT甲级 1025 PAT Ranking
随机推荐
苹果手机证书构体知识
手机新领域用法知识
2022茶艺师(高级)上岗证题库模拟考试平台操作
QIngScan使用
2016Analyzing the Behavior of Visual Question Answering Models
USB DRIVER
Record the method of reading excel provided by unity and the solution to some pits encountered
Pat grade a 1019 general palindromic number
Qingscan use
Resnet152 pepper pest image recognition 1.0
Agile development - self use
对数器
Servlet and JSP final review examination site sorting 42 questions and 42 answers
Further exploration of handler (Part 2) (the most complete analysis of the core principles of handler)
2021:Graphhopper: Multi-Hop Scene Graph Reasoning for Visual Question Answering
Sword finger offer 𞓜: stack and queue (simple)
PAT甲级 1019 General Palindromic Number
2019LXMERT:Learning Cross-Modality Encoder Representations from Transformers
2020:MUTANT: A Training Paradigm for Out-of-Distribution Generalizationin Visual Question Answering
CVPR2021:Separating Skills and Concepts for Novel Visual Question Answering将技巧与概念分开的新视觉问答