当前位置:网站首页>deep learning statistical arbitrage
deep learning statistical arbitrage
2022-06-27 10:54:00 【SyncStudy】
deep learning statistical arbitrage
- empirial
- stanford
- Jorge guijarro
- markus
Motivation
- Pair trading
- GM and Ford
- Assumption
- prices are on average similar
- Exploit temporal price different between similiar seests
Three components of statisical arbitarge
- contrict protolio
- trading signal
Foundational problem
Research question
- arbitrage portolios
- arbitarge signals
Contributions
- Novel conceptual framework
- Unified framework
- To compare different statistical arbitrage methods
- Portolio generation
- signal extraction
- allocation decision
- Study each component and compare with conventional models
Novel methods
- statistical factor
- Convolution neural network
Empirical
- substantially outperforms
- sharpe ratios
Parametric models
- PCA
- cOINTEGRATION
- STOCHASTIC CONTROL
- SIMPLE PAIRS TRADING
- INTRACTABLE PARAMETRIC MODELS WITH ml
Model
R n , t = β n , t − 1 T F t + ε R_{n,t}=\beta^T_{n,t-1}F_t+\varepsilon Rn,t=βn,t−1TFt+ε
x : = ε t L : = ( ε n , t − L ) x:=\varepsilon_t^L:=(\varepsilon_{n,t-L}) x:=εtL:=(εn,t−L)
w t − 1 ε = w ε ( θ ( ε t − 1 L ) ) w_{t-1}^\varepsilon=w^\varepsilon(\theta(\varepsilon_{t-1}^L)) wt−1ε=wε(θ(εt−1L))
w t − 1 R = w_{t-1}^R=\frac{}{} wt−1R=
d X t = κ ( μ − X t ) dX_t = \kappa(\mu-X_t) dXt=κ(μ−Xt)
θ i = ∑ j = 1 L W j f i l t e r X j \theta_i=\sum_{j=1}^{L}W_j^{filter}X_j θi=j=1∑LWjfilterXj
W W^{} W
θ C N N + T r a n s ( X ) \theta^{CNN+Trans}(X) θCNN+Trans(X)
y I ( 0 ) = ∑ m = 1 D s i z e W m l o c a l X y_I^{(0)}=\sum_{m=1}^{D_{size}}W_m^{local}X yI(0)=m=1∑DsizeWmlocalX
h i = ∑ I = 1 L α i , I x I ~ h_i=\sum_{I=1}^{L}\alpha_i,I\widetilde{x_I} hi=I=1∑Lαi,IxI
F a m a − F r e n c h F a c t o r Fama-French Factor Fama−FrenchFactor
C N N + T r a n s f o r m CNN+Transform CNN+Transform
α , t α , R 2 \alpha, t_\alpha,R^2 α,tα,R2
t μ t_\mu tμ
w t − 1 = w t − 1 w_{t-1}=\frac{w_{t-1}^{}}{} wt−1=wt−1
L = 60 L=60 L=60
F F N FFN FFN
< 1 % <1\% <1%
T t r a i n = 4 T_{train}=4 Ttrain=4
f a s t − r e v e r s a l fast-reversal fast−reversal
- fast reversal
- early momemtum
- low frequency downturn
- low frequency momentum
- smooth trends or local curvature
- most recent 14 days get more attention for trading decision
- more complex than simple reversal patterns
c o s t ( w t − 1 R , w t − 2 R ) = 0.0005 ∣ ∣ w t − 1 cost(w_{t-1}^R, w_{t-2}^R)=0.0005||w_{t-1} cost(wt−1R,wt−2R)=0.0005∣∣wt−1
B = 7 B=7 B=7
S R = 1 SR=1 SR=1
a r b i t r a g e arbitrage arbitrage
m e a n mean mean
Δ P = P 2 − P 1 \Delta P=P_2-P_1 ΔP=P2−P1
V = ∑ V=\sum V=∑
V = ∣ β 0 + β 1 Δ P ∣ V=|\beta_0+\beta_1\Delta P| V=∣β0+β1ΔP∣
β 0 = c ( μ A − μ B ) \beta_0=c(\mu_A-\mu_B) β0=c(μA−μB)
β 1 = f ( r i s k ) \beta_1=f(risk) β1=f(risk)
E ( V ) = E [ ∣ β 0 + β 1 σ P Z ∣ ] E(V)=E[|\beta_0+\beta_{1\sigma P}Z|] E(V)=E[∣β0+β1σPZ∣]
Z Z Z
N ( 0 , 1 ) N(0,1) N(0,1)
E ( V ) = c o n s t a n t E(V)=constant E(V)=constant
1 1 + ϕ ( h ∣ β 0 ∣ β 1 ) \frac{1}{1+\phi (\frac{h|\beta_0|}{\beta_1})} 1+ϕ(β1h∣β0∣)1
K > S T K>S_T K>ST
K ≤ S τ K \le S_\tau K≤Sτ
K − S τ K-S_\tau K−Sτ
K > S 0 , k = S 0 K>S_0, k=S_0 K>S0,k=S0
m o n e y n e s s = l o g ( K S 0 ) σ τ moneyness=\frac{log(\frac{K}{S_0})}{\sigma \sqrt{\tau}} moneyness=στlog(S0K)
l o n g d a t e d = l a r g e τ long dated = large \tau longdated=largeτ
M o n e y n e s s = l o g ( K S 0 ) σ τ Moneyness = \frac{log(\frac{K}{S_0})}{\sigma\sqrt{\tau}} Moneyness=στlog(S0K)
S P X SPX SPX
3 b i l l i o n 3 billion 3billion
R V t o p t i o n = ∑ i ( r i , t o p t i o n ) 2 RV_t^{option}=\sum_i (r_{i,t}^{option})^2 RVtoption=i∑(ri,toption)2
realized variance
R V t o p t i o n = ∑ i ( r i , t o p t i o n ) 2 RV_t^{option}=\sum_i(r_{i,t}^{option})^2 RVtoption=i∑(ri,toption)2
边栏推荐
- 多线程实现 重写run(),怎么注入使用mapper文件操作数据库
- Native JS implements page scroll bar loading data and page drop-down loading content
- 21:第三章:开发通行证服务:4:进一步完善【发送短信,接口】;(在【发送短信,接口】中,调用阿里云短信服务和redis服务;一种设计思想:BaseController;)
- JS file upload and download
- Review of last week's hot spots (6.20-6.26)
- ECMAScript 6(es6)
- 【TcaplusDB知识库】Tmonitor单机安装指引介绍(二)
- Leetcode 729. 我的日程安排表 I(牛逼,已解决)
- Ci/cd automatic test_ 16 best practices for CI / CD pipeline to accelerate test automation
- Audiotrack and audiolinker
猜你喜欢

Mail system (based on SMTP protocol and POP3 protocol -c language implementation)

ci/cd自动化测试_CI / CD管道加快测试自动化的16种最佳实践

如何在 Methodot 中部署 JupyterLab?

【HCIE-RS复习思维导图】- STP

Exception in Chinese character fuzzy query of MySQL database

NVME2.0协议——新特性

直播电子商务应用程序开发需要什么基本功能?未来发展前景如何?

直播電子商務應用程序開發需要什麼基本功能?未來發展前景如何?

在外企远程办公是什么体验? | 社区征文

lvi-sam 总结
随机推荐
【Methodot 专题】什么样的低代码平台更适合开发者?
JS file upload and download
Glide缓存机制
居家办公竟比去公司上班还累? | 社区征文
软交换呼叫中心系统的支撑系统
Quelles sont les fonctions de base nécessaires au développement d'applications de commerce électronique en direct? Quelles sont les perspectives d'avenir?
20 jeunes Pi recrutés par l'Institut de microbiologie de l'Académie chinoise des sciences, 2 millions de frais d'établissement et 10 millions de fonds de démarrage (à long terme)
Win10快捷键整理
mysql数据库汉字模糊查询出现异常
迪米特法则
使用Karmada实现Helm应用的跨集群部署【云原生开源】
ECMAScript 6(es6)
Audiotrack and audiolinker
What is the experience of telecommuting in a foreign company| Community essay solicitation
【TcaplusDB知识库】TcaplusDB机型管理介绍
Review of last week's hot spots (6.20-6.26)
[tcapulusdb knowledge base] Introduction to tmonitor stand-alone installation guidelines (I)
lvi-sam 总结
Error im002 when Oracle connects to MySQL
有关WIN10的内存压缩