当前位置:网站首页>Pytorch neural network
Pytorch neural network
2022-06-26 08:54:00 【Thick Cub with thorns】
pytorch Deep learning
RNN Cyclic neural network pytorch
RNN
The latter neural network will be based on the contribution of the former neural network
A wider range of time series structure inputs can be accepted
LSTM RNN
long short-term memory( Long and short term memory )
Ordinary rnn The initial information will be ignored , Reduce the initial information during back propagation .
And cause The gradient disappears , Also called gradient dispersion
It is also possible to create infinity after the initial gradient change , be called Gradient explosion
therefore , Ordinary rnn Unable to solve the problem of pivot point memory
lstm rnn More input in , Output , Forget the controller
According to the importance of input and output , Join the recurrent neural network
pytorch Realization
Classification problem
import torch
from torch import nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
# torch.manual_seed(1) # reproducible
# Hyper Parameters
EPOCH = 1 # train the training data n times, to save time, we just train 1 epoch
BATCH_SIZE = 64
TIME_STEP = 28 # rnn time step / image height
INPUT_SIZE = 28 # rnn input size / image width
LR = 0.01 # learning rate
DOWNLOAD_MNIST = True # set to True if haven't download the data
# Mnist digital dataset
train_data = dsets.MNIST(
root='./mnist/',
train=True, # this is training data
transform=transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to
# torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
download=DOWNLOAD_MNIST, # download it if you don't have it
)
# plot one example
print(train_data.train_data.size()) # (60000, 28, 28)
print(train_data.train_labels.size()) # (60000)
plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
plt.title('%i' % train_data.train_labels[0])
plt.show()
# Data Loader for easy mini-batch return in training
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
# convert test data into Variable, pick 2000 samples to speed up testing
test_data = dsets.MNIST(root='./mnist/', train=False, transform=transforms.ToTensor())
test_x = test_data.test_data.type(torch.FloatTensor)[:2000]/255. # shape (2000, 28, 28) value in range(0,1)
test_y = test_data.test_labels.numpy()[:2000] # covert to numpy array
class RNN(nn.Module):
def __init__(self):
super(RNN, self).__init__()
self.rnn = nn.LSTM( # if use nn.RNN(), it hardly learns
input_size=INPUT_SIZE,
hidden_size=64, # rnn hidden unit
num_layers=1, # number of rnn layer
batch_first=True, # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
)
self.out = nn.Linear(64, 10)
def forward(self, x):
# x shape (batch, time_step, input_size)
# r_out shape (batch, time_step, output_size)
# h_n shape (n_layers, batch, hidden_size)
# h_c shape (n_layers, batch, hidden_size)
r_out, (h_n, h_c) = self.rnn(x, None) # None represents zero initial hidden state
# choose r_out at the last time step
out = self.out(r_out[:, -1, :])
return out
rnn = RNN()
print(rnn)
out
RNN(
(rnn): LSTM(28, 64, batch_first=True)
(out): Linear(in_features=64, out_features=10, bias=True)
)
Achieve optimization 、 Training
optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all cnn parameters
loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted
# training and testing
for epoch in range(EPOCH):
for step, (b_x, b_y) in enumerate(train_loader): # gives batch data
b_x = b_x.view(-1, 28, 28) # reshape x to (batch, time_step, input_size)
output = rnn(b_x) # rnn output
loss = loss_func(output, b_y) # cross entropy loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
if step % 50 == 0:
test_output = rnn(test_x) # (samples, time_step, input_size)
pred_y = torch.max(test_output, 1)[1].data.numpy()
accuracy = float((pred_y == test_y).astype(int).sum()) / float(test_y.size)
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
# print 10 predictions from test data
test_output = rnn(test_x[:10].view(-1, 28, 28))
pred_y = torch.max(test_output, 1)[1].data.numpy()
print(pred_y, 'prediction number')
print(test_y[:10], 'real number')
out
Epoch: 0 | train loss: 2.2896 | test accuracy: 0.12
Epoch: 0 | train loss: 0.8098 | test accuracy: 0.60
Epoch: 0 | train loss: 0.6983 | test accuracy: 0.73
Epoch: 0 | train loss: 0.5486 | test accuracy: 0.81
Epoch: 0 | train loss: 0.7209 | test accuracy: 0.85
Epoch: 0 | train loss: 0.2399 | test accuracy: 0.87
Epoch: 0 | train loss: 0.4179 | test accuracy: 0.90
Epoch: 0 | train loss: 0.5278 | test accuracy: 0.88
Epoch: 0 | train loss: 0.3201 | test accuracy: 0.90
Epoch: 0 | train loss: 0.1950 | test accuracy: 0.92
Epoch: 0 | train loss: 0.2301 | test accuracy: 0.92
Epoch: 0 | train loss: 0.1683 | test accuracy: 0.94
Epoch: 0 | train loss: 0.1188 | test accuracy: 0.93
Epoch: 0 | train loss: 0.0566 | test accuracy: 0.95
Epoch: 0 | train loss: 0.0941 | test accuracy: 0.94
Epoch: 0 | train loss: 0.3501 | test accuracy: 0.95
Epoch: 0 | train loss: 0.0342 | test accuracy: 0.93
Epoch: 0 | train loss: 0.0753 | test accuracy: 0.96
Epoch: 0 | train loss: 0.1507 | test accuracy: 0.96
[7 2 1 0 4 1 4 9 6 9] prediction number
[7 2 1 0 4 1 4 9 5 9] real number
The return question
import torch
from torch import nn
import numpy as np
import matplotlib.pyplot as plt
# torch.manual_seed(1) # reproducible
# Hyper Parameters
TIME_STEP = 10 # rnn time step
INPUT_SIZE = 1 # rnn input size
LR = 0.02 # learning rate
# show data
steps = np.linspace(0, np.pi * 2, 100, dtype=np.float32) # float32 for converting torch FloatTensor
x_np = np.sin(steps)
y_np = np.cos(steps)
plt.plot(steps, y_np, 'r-', label='target (cos)')
plt.plot(steps, x_np, 'b-', label='input (sin)')
plt.legend(loc='best')
plt.show()
class RNN(nn.Module):
def __init__(self):
super(RNN, self).__init__()
self.rnn = nn.RNN(
input_size=INPUT_SIZE,
hidden_size=32, # rnn hidden unit
num_layers=1, # number of rnn layer
batch_first=True, # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
)
self.out = nn.Linear(32, 1)
def forward(self, x, h_state):
# x (batch, time_step, input_size)
# h_state (n_layers, batch, hidden_size)
# r_out (batch, time_step, hidden_size)
r_out, h_state = self.rnn(x, h_state)
outs = [] # save all predictions
for time_step in range(r_out.size(1)): # calculate output for each time step
outs.append(self.out(r_out[:, time_step, :]))
return torch.stack(outs, dim=1), h_state
# instead, for simplicity, you can replace above codes by follows
# r_out = r_out.view(-1, 32)
# outs = self.out(r_out)
# outs = outs.view(-1, TIME_STEP, 1)
# return outs, h_state
# or even simpler, since nn.Linear can accept inputs of any dimension
# and returns outputs with same dimension except for the last
# outs = self.out(r_out)
# return outs
rnn = RNN()
print(rnn)
optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all cnn parameters
loss_func = nn.MSELoss()
h_state = None # for initial hidden state
plt.figure(1, figsize=(12, 5))
plt.ion() # continuously plot
for step in range(100):
start, end = step * np.pi, (step + 1) * np.pi # time range
# use sin predicts cos
steps = np.linspace(start, end, TIME_STEP, dtype=np.float32,
endpoint=False) # float32 for converting torch FloatTensor
x_np = np.sin(steps)
y_np = np.cos(steps)
x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis]) # shape (batch, time_step, input_size)
y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis])
prediction, h_state = rnn(x, h_state) # rnn output
# !! next step is important !!
h_state = h_state.data # repack the hidden state, break the connection from last iteration
loss = loss_func(prediction, y) # calculate loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
# plotting
plt.plot(steps, y_np.flatten(), 'r-')
plt.plot(steps, prediction.data.numpy().flatten(), 'b-')
plt.draw();
plt.pause(0.05)
plt.ioff()
plt.show()
out
RNN(
(rnn): RNN(1, 32, batch_first=True)
(out): Linear(in_features=32, out_features=1, bias=True)
)
AutoEncoder( Self coding )
First compress the original data , Decompress to get the output
Then the output is optimized by reverse transmission
It's a kind of Unsupervised learning , More than the PCA
After compression, the encoder is obtained , Master the essence of the original data
Reinforcement learning
- Deep Q Network(DQN)
- GAN( Meaningless random number generation , Improve each other )
- generator Generate the data ,discriminator To judge
torch Is dynamic
May adopt GPU Speed up
Ease of overfitting (Over fitting)
Add one more drop layer
net_dropped = torch.nn.Sequential(
torch.nn.Linear(1, N_HIDDEN),
torch.nn.Dropout(0.5), # Then half of the points are shielded , Achieve mitigation overfitting
torch.nn.ReLU(),
)
Batch of standardized (Batch Normalization)
The excitation function is insensitive to large numbers
This is not just at the input layer , Also occurs in hidden layers
Batch standardization is between the excitation function and the next layer
It is divided into standard chemical engineering sequence , Reverse standardization process
def __init__(self, batch_normalization=False):
super(Net, self).__init__()
self.do_bn = batch_normalization
self.fns = []
self.bns = []
self.bn_input = nn.BatchNormal1d(1, momentum=0.5)
for i in range(N_HIDDEN):
input_size = 1 if i == 0 else 10
fc = nn.Linear(input_size, 10)
setattr(self, 'fc%i' % i, fc) # important
self._set_init()
self.predict = nn.Linear(10, 1)
self._set_init(self.predict)
边栏推荐
- Text to SQL model ----irnet
- Tensorboard
- Software engineering - personal assignment - question review and personal summary
- Opencv learning notes 3
- Nebula diagram_ Object detection and measurement_ nanyangjx
- Using transformers of hugging face to realize multi label text classification
- Intra class data member initialization of static const and static constexpr
- ROS learning notes (6) -- function package encapsulated into Library and called
- opencv學習筆記三
- Clion installation + MinGW configuration + opencv installation
猜你喜欢

力扣399【除法求值】【并查集】

【云原生 | Kubernetes篇】深入万物基础-容器(五)

Remote centralized control of distributed sensor signals using wireless technology

FFmpeg音视频播放器实现

Degree of freedom analysis_ nanyangjx

SRv6----IS-IS扩展

Solution to the encoding problem encountered by the crawler when requesting get/post

Convex optimization of quadruped

opencv學習筆記三

Object extraction_ nanyangjx
随机推荐
static const与static constexpr的类内数据成员初始化
SRv6----IS-IS扩展
How to correctly PIP install pyscipopt
opencv学习笔记三
QT_ AI
VS2005 compiles libcurl to normaliz Solution of Lib missing
Yolov5进阶之三训练环境
OpenCV Learning notes iii
Koa_ mySQL_ Integration of TS
Ultrasonic image segmentation
深度学习论文阅读目标检测篇(七)中文版:YOLOv4《Optimal Speed and Accuracy of Object Detection》
The best time to buy and sell stocks to get the maximum return
Yolov5进阶之二安装labelImg
Trimming_ nanyangjx
Isinstance() function usage
Regular Expression 正则表达式
opencv學習筆記三
Segmentation of structured light images using segmentation network
Analysis of Yolo series principle
读书笔记:SQL 查询中的SQL*Plus 替换变量(DEFINE变量)和参数