当前位置:网站首页>Yolov5进阶之二安装labelImg
Yolov5进阶之二安装labelImg
2022-06-26 08:32:00 【宇称不守恒4.0】
为了能够完成训练,需要安装打标软件labelimg,首先先激活想安装的env环境,然后执行
pip install pyqt5
pip install labelImg
安装完成
环境下执行labelImg即可进入软件,另外在env script里能看到 labelImg的脚本文件。
期间会遇到警告,是关于 CFG utf8格式的,可以不用管他。
在激活环境下运行labelimg 进入界面,其中关键的选项都在途中指示
打开文件夹,对图片进行标识,如果都是同一种类别,右侧选定 use deafult label 比如 kn(柯南)
对图进行标注并存为 txt文件。
这样打标的工作就完成了,下面要生成yaml文件,在生成之前还要先调试yolov5的训练环境。见进阶之三
边栏推荐
- Intra class data member initialization of static const and static constexpr
- Koa_ mySQL_ Integration of TS
- keras_ Callback function summary
- 2020-10-17
- 三菱PLC若想实现以太网无线通讯,需要具备哪些条件?
- Recovering the system with Clonezilla USB disk
- Trimming_ nanyangjx
- Performance comparison of unaryexpr's function on matrix elements in eigen Library
- opencv学习笔记三
- 自动化测试中,三种常用的等待方式,强制式(sleep) 、 隐式 ( implicitly_wait ) 、显式(expected_conditions)
猜你喜欢

leetcode2022年度刷题分类型总结(十二)并查集

STM32 project design: smart home system design based on stm32

First character that appears only once

SQL learning experience (II): question brushing record

Relationship extraction --tplinker

(2) Buzzer

Playing card image segmentation

How to realize wireless Ethernet high-speed communication for multiple Mitsubishi PLCs?

Jupyter的安装

Isinstance() function usage
随机推荐
Golang JSON unsupported value: Nan processing
Detailed explanation of self attention & transformer
Whale conference provides digital upgrade scheme for the event site
1.21 study logistic regression and regularization
Remote centralized control of distributed sensor signals using wireless technology
Checkerboard generation + camera calibration + stereo matching
Partial summary of 45 lectures on geek time MySQL
STM32 project design: smart door lock PCB and source code based on stm32f1 (4 unlocking methods)
Degree of freedom analysis_ nanyangjx
SOC wireless charging scheme
torch. fft
Nebula diagram_ Object detection and measurement_ nanyangjx
opencv学习笔记二
Use of PCL
STM32 project design: smart home system design based on stm32
Opencv learning notes 3
RecyclerView Item 根据 x,y 坐标得到当前position(位置)
Using transformers of hugging face to realize multi label text classification
keras_ Callback function summary
Relationship extraction --r-bert