当前位置:网站首页>20年ICPC澳门站L - Random Permutation

20年ICPC澳门站L - Random Permutation

2022-06-24 23:48:00 int 我

An integer sequence with length nn, denoted by a_1,a_2,\cdots,a_na1​,a2​,⋯,an​, is generated randomly, and the probability of being 1,2,\cdots,n1,2,⋯,n are all \frac{1}{n}n1​ for each a_iai​ (i=1,2,\cdots,n)(i=1,2,⋯,n).

Your task is to calculate the expected number of permutations p_1,p_2,\cdots,p_np1​,p2​,⋯,pn​ from 11 to nn such that p_i \le a_ipi​≤ai​ holds for each i=1,2,\cdots,ni=1,2,⋯,n.

Input

The only line contains an integer nn (1 \leq n \leq 50)(1≤n≤50).

Output

Output the expected number of permutations satisfying the condition. Your answer is acceptable if its absolute or relative error does not exceed 10^{-9}10−9.

Formally speaking, suppose that your output is xx and the jury's answer is yy. Your output is accepted if and only if \frac{|x - y|}{\max(1, |y|)} \leq 10^{-9}max(1,∣y∣)∣x−y∣​≤10−9.

InputcopyOutputcopy
2
1.000000000000

Sample 2

InputcopyOutputcopy
3
1.333333333333

Sample 3

InputcopyOutputcopy
50
104147662762941310907813025277584020848013430.758061352192

题意:长度为n的a数组中,每个数是1,2,3,4..n的概率都是1/n,对于全排列的p数组(如1,2,3。1,3,2。2,1,3。2,3,1。3,1,2。3,2,1),全部下标i都成立的pi<ai的数学期望是多少。

题意比较难懂,就是所有全排列的p数组答案+起来,p数组为1,2答案2/4,因为a数组有1,2。2,2可以,两个的概率是2/2*2=0.5,p数组为2,1的答案也是0.5,最后就是1.000000。

思路:答案简单算算可以知道为:(n!*n!)/n^n。没有公式直接算即可。

,他的意思应该是前10位对就ok,所以c++的long double和py直接小数计算都可

 代码:

#include<bits/stdc++.h>
using namespace std;
#define fo(a,b) for(int i=a;i<=b;i++)
#define inf 0x3f3f3f3f
#define dou long double
#define M 100005
dou res=1,n;
int main(){
    cin>>n;
    for(dou i=0;i<n;i++){
        res*=(n-2*i+i*i/n);
    }
    printf("%.15Lf\n",res);
    return 0;
}

py代码:

n=(int)(input())
res=1
for i in range(1,n+1):
    res*=1.0/n*i*i
print(res)

原网站

版权声明
本文为[int 我]所创,转载请带上原文链接,感谢
https://blog.csdn.net/m0_58177653/article/details/125438086