当前位置:网站首页>numpy.linspace()
numpy.linspace()
2022-06-24 09:40:00 【Wanderer001】
参考 numpy.linspace - 云+社区 - 腾讯云
numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)[source]
Return evenly spaced numbers over a specified interval.
Returns num evenly spaced samples, calculated over the interval [start, stop].
The endpoint of the interval can optionally be excluded.
Changed in version 1.16.0: Non-scalar start and stop are now supported.
| Parameters: | start : array_like The starting value of the sequence. stop : array_like The end value of the sequence, unless endpoint is set to False. In that case, the sequence consists of all but the last of num : int, optional Number of samples to generate. Default is 50. Must be non-negative. endpoint : bool, optional If True, stop is the last sample. Otherwise, it is not included. Default is True. retstep : bool, optional If True, return (samples, step), where step is the spacing between samples. dtype : dtype, optional The type of the output array. If dtype is not given, infer the data type from the other input arguments. New in version 1.9.0. axis : int, optional The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use -1 to get an axis at the end. New in version 1.16.0. |
|---|---|
| Returns: | samples : ndarray There are num equally spaced samples in the closed interval step : float, optional Only returned if retstep is True Size of spacing between samples. |
See also
Similar to linspace, but uses a step size (instead of the number of samples).
Similar to linspace, but with numbers spaced evenly on a log scale (a geometric progression).
Similar to geomspace, but with the end points specified as logarithms.
Examples
>>> np.linspace(2.0, 3.0, num=5)
array([2. , 2.25, 2.5 , 2.75, 3. ])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
array([2. , 2.2, 2.4, 2.6, 2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
(array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)Graphical illustration:
>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = np.zeros(N)
>>> x1 = np.linspace(0, 10, N, endpoint=True)
>>> x2 = np.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show() 
边栏推荐
- 引擎国产化适配&重构笔记
- Getting user information for applet learning (getuserprofile and getUserInfo)
- Distributed | how to make "secret calls" with dble
- vim的使用
- Canvas draw picture
- Detailed explanation of ThinkPHP 5.0 Model Association
- linux下oracle服务器打开允许远程连接
- Go language development environment setup +goland configuration under the latest Windows
- 植物生长h5动画js特效
- Impdp leading schema message ora-31625 exception handling
猜你喜欢
随机推荐
Desktop software development framework reward
Honeypot 2 hfish, ehoney
英伟达这篇CVPR 2022 Oral火了!2D图像秒变逼真3D物体!虚拟爵士乐队来了!
canvas无限扫描js特效代码
Phpstrom code formatting settings
p5.js实现的炫酷交互式动画js特效
植物生长h5动画js特效
YOLOv6:又快又准的目标检测框架开源啦
Yolov6: the fast and accurate target detection framework is open source
[Eureka source code analysis]
How to improve the efficiency of network infrastructure troubleshooting and bid farewell to data blackouts?
CVPR 2022 oral | NVIDIA proposes an efficient visual transformer network a-vit with adaptive token. The calculation of unimportant tokens can be stopped in advance
Internet of things? Come and see Arduino on the cloud
Canvas draw picture
GeoGebra 实例 时钟
Nvisual digital infrastructure operation management software platform
机器学习——感知机及K近邻
411-栈和队列(20. 有效的括号、1047. 删除字符串中的所有相邻重复项、150. 逆波兰表达式求值、239. 滑动窗口最大值、347. 前 K 个高频元素)
微信小程序学习之 实现列表渲染和条件渲染.
Getting user information for applet learning (getuserprofile and getUserInfo)









