当前位置:网站首页>[notes of Wu Enda] convolutional neural network
[notes of Wu Enda] convolutional neural network
2022-06-24 21:53:00 【Zzu dish】
Convolutional neural networks
Computer vision

Computer vision problems such as image recognition , Image fusion , Object detection, etc

cat Pictures of the 64 * 64 * 3
- front 64 Represents the height and width of pixels ,3 representative RGB3 layer

Such pictures are small , If for 1000 * 1000 * 3, Using neural networks
- The input of the first layer , an X_1,X_2…X_N, Altogether 1000 * 1000 * 3 individual x
- The output of the first layer ,1000 Nodes
- The parameters of the first layer
- w (1000,3m)
- b (1000,1)
boundary detection



The larger the number, the greater the brightness , The smaller the number, the darker
- Input is 6 * 6 Matrix
- filter 3 * 3 perhaps kernel
- Output 4 * 4
More boundary detection

There are different values for filters , Perform boundary detection differently
Padding

Boundary expansion , The input matrix is filtered by a filter , The matrix dimension of the output is reduced , To keep the dimensions of the matrix constant , We can fill the original matrix boundary with numerical values .
- Input matrix : n * n eg: 6 * 6
- Fill in the boundary : pading P=1
- filter : f * f eg: 3 *3
- The output matrix : ( n+2P-f+1 ) * ( n+2P-f+1 )
- The output matrix : 6+2-3+1 =6
Two convolution methods
- valid: No filling
- Same:Pad so that output size is the same as the input size.
Convolution step
Strided Convolutions


Picture dimension : n × n
Filter dimension : f × f
fill Padding : p
step stride : s
Three dimensional convolution
(Convolutions overvolumes)

Think of the 3D filter as a small square

Then move on the three-dimensional matrix Multiply and add with the corresponding plane
here 27 Multiplication of two Add it all up
Single layer convolution network
One layer of a convolutional network

- Input a_{0} by 6 × 6 × 3
- The filter is equivalent to a parameter matrix w_{1}
- z_{1}=w_{1}a_{0}+b_{1}
- a_{1}=g(z_{1}) Use nonlinear functions Relu
- g Represents nonlinear transformation
- Two filters So finally 4 × 4 × 2
If you have 10 filters that are 3 x 3 x 3 in one layer of a neural network, how many parameters does that layer have?
If you have a layer in a neural network 10 individual 3x3x3 Filter , How many parameters does this layer have ?
3 × 3 × 3 ×10+bias( 10 )=280 parameters

Simple convolution network case
A simple convolution network example

first floor
Output results 
The second floor
Output results 
The third level
Output results 
7 × 7 × 40=1960 Features
After logical regression , Output the last y value

The type of one layer in convolutional networks :
- Convolution CONV Convolution
- Pooling POOL Pooling
- Fully connected FC Full connection
Pooling layer
Pooling layer:Max pooling

here f=2 s=2
Move the maximum value in the marquee
Hyperparameters:
- f : filter size
- s : stride
- Max or average pooling
Examples of convolutional neural networks
Convolutional neural network example

Be careful : here CONV + POOL Count the first floor , Because pooling does not require parameters
Handwritten digital pictures → layer_1(Conv1 PooL1) →layer_2(CONV2 POOL2) → Fc3 →FC4→softmax →10 outputs
Parameters required for each layer
Maybe not : layer_1(Conv1 PooL1):5 × 5 × 3 × 6 +bias (6)
…
Fully connected layer FC3: input 400 output 120
- Every input Participate in all output Generation
- Parameters :1 * 120 * 400+bias( 1 )

Why convolutions?

Too many parameters are required for direct full connection


边栏推荐
- Slider控制Animator动画播放进度
- 网络层 && IP
- The collection of zero code enterprise application cases in various industries was officially released
- 煮茶论英雄!福建省发改委、市营商办领导一行莅临育润大健康事业部交流指导
- 使用Adb连接设备时提示设备无权限
- Volcano成Spark默认batch调度器
- EasyBypass
- 即构「畅直播」上线!提供全链路升级的一站式直播服务
- Byte software testing basin friends, you can change jobs. Is this still the byte you are thinking about?
- Wireshark packet capturing skills summarized by myself
猜你喜欢

多线程收尾

The collection of zero code enterprise application cases in various industries was officially released

介绍BootLoader、PM、kernel和系统开机的总体流程

煮茶论英雄!福建省发改委、市营商办领导一行莅临育润大健康事业部交流指导

Blender's landscape

(to be added) games101 job 7 improvement - knowledge you need to know to realize micro surface model

66 pitfalls in go programming language: pitfalls and common errors of golang developers

《各行业零代码企业应用案例集锦》正式发布

如何做到全彩户外LED显示屏节能环保

Make tea and talk about heroes! Leaders of Fujian Provincial Development and Reform Commission and Fujian municipal business office visited Yurun Health Division for exchange and guidance
随机推荐
【吴恩达笔记】多变量线性回归
字节的软件测试盆友们你们可以跳槽了,这还是你们心心念念的字节吗?
suspense组件和异步组件
队列实现原理和应用
Mysql优化查询速度
Suspend component and asynchronous component
旅行商问题(TSP)的相关论文总结
WMI and PowerShell get TCP connection list
Blender FAQs
dp问题集
煮茶论英雄!福建省发改委、市营商办领导一行莅临育润大健康事业部交流指导
Kubernetes 集群中流量暴露的几种方案
how to install clustershell
AntDB数据库在线培训开课啦!更灵活、更专业、更丰富
(to be added) games101 job 7 improvement - knowledge you need to know to realize micro surface model
Remove the screen recording reminder (seven cattle cloud demo)
Memcached comprehensive analysis – 2 Understand memcached memory storage
【产品设计研发协作工具】上海道宁为您提供蓝湖介绍、下载、试用、教程
leetcode_1365
一文理解OpenStack网络