当前位置:网站首页>[notes of Wu Enda] convolutional neural network
[notes of Wu Enda] convolutional neural network
2022-06-24 21:53:00 【Zzu dish】
Convolutional neural networks
Computer vision

Computer vision problems such as image recognition , Image fusion , Object detection, etc

cat Pictures of the 64 * 64 * 3
- front 64 Represents the height and width of pixels ,3 representative RGB3 layer

Such pictures are small , If for 1000 * 1000 * 3, Using neural networks
- The input of the first layer , an X_1,X_2…X_N, Altogether 1000 * 1000 * 3 individual x
- The output of the first layer ,1000 Nodes
- The parameters of the first layer
- w (1000,3m)
- b (1000,1)
boundary detection



The larger the number, the greater the brightness , The smaller the number, the darker
- Input is 6 * 6 Matrix
- filter 3 * 3 perhaps kernel
- Output 4 * 4
More boundary detection

There are different values for filters , Perform boundary detection differently
Padding

Boundary expansion , The input matrix is filtered by a filter , The matrix dimension of the output is reduced , To keep the dimensions of the matrix constant , We can fill the original matrix boundary with numerical values .
- Input matrix : n * n eg: 6 * 6
- Fill in the boundary : pading P=1
- filter : f * f eg: 3 *3
- The output matrix : ( n+2P-f+1 ) * ( n+2P-f+1 )
- The output matrix : 6+2-3+1 =6
Two convolution methods
- valid: No filling
- Same:Pad so that output size is the same as the input size.
Convolution step
Strided Convolutions


Picture dimension : n × n
Filter dimension : f × f
fill Padding : p
step stride : s
Three dimensional convolution
(Convolutions overvolumes)

Think of the 3D filter as a small square

Then move on the three-dimensional matrix Multiply and add with the corresponding plane
here 27 Multiplication of two Add it all up
Single layer convolution network
One layer of a convolutional network

- Input a_{0} by 6 × 6 × 3
- The filter is equivalent to a parameter matrix w_{1}
- z_{1}=w_{1}a_{0}+b_{1}
- a_{1}=g(z_{1}) Use nonlinear functions Relu
- g Represents nonlinear transformation
- Two filters So finally 4 × 4 × 2
If you have 10 filters that are 3 x 3 x 3 in one layer of a neural network, how many parameters does that layer have?
If you have a layer in a neural network 10 individual 3x3x3 Filter , How many parameters does this layer have ?
3 × 3 × 3 ×10+bias( 10 )=280 parameters

Simple convolution network case
A simple convolution network example

first floor
Output results 
The second floor
Output results 
The third level
Output results 
7 × 7 × 40=1960 Features
After logical regression , Output the last y value

The type of one layer in convolutional networks :
- Convolution CONV Convolution
- Pooling POOL Pooling
- Fully connected FC Full connection
Pooling layer
Pooling layer:Max pooling

here f=2 s=2
Move the maximum value in the marquee
Hyperparameters:
- f : filter size
- s : stride
- Max or average pooling
Examples of convolutional neural networks
Convolutional neural network example

Be careful : here CONV + POOL Count the first floor , Because pooling does not require parameters
Handwritten digital pictures → layer_1(Conv1 PooL1) →layer_2(CONV2 POOL2) → Fc3 →FC4→softmax →10 outputs
Parameters required for each layer
Maybe not : layer_1(Conv1 PooL1):5 × 5 × 3 × 6 +bias (6)
…
Fully connected layer FC3: input 400 output 120
- Every input Participate in all output Generation
- Parameters :1 * 120 * 400+bias( 1 )

Why convolutions?

Too many parameters are required for direct full connection


边栏推荐
- Slider控制Animator动画播放进度
- [theory] deep learning in the covid-19 epic: a deep model for urban traffic revitalization index
- Memcached comprehensive analysis – 5 Memcached applications and compatible programs
- 火狐拖放后,总会默认打开百度搜索,如果是图片,则会打开图片。
- 介绍BootLoader、PM、kernel和系统开机的总体流程
- cv2导包时报Could not find a version that satisfies the requirement cv2 (from versions: none)
- 福建省发改委福州市营商办莅临育润大健康事业部指导视察工作
- Tournament sort
- 架构实战营 第 6 期 毕业设计
- A deep learning model for urban traffic flow prediction with traffic events mined from twitter
猜你喜欢

多线程收尾

平衡二叉搜索树

【论】Deep learning in the COVID-19 epidemic: A deep model for urban traffic revitalization index

Installing Oracle without graphical interface in virtual machine centos7 (nanny level installation)
![[精选] 多账号统一登录,你如何设计?](/img/df/9b4fc11a6971ebe8162ae84250a782.png)
[精选] 多账号统一登录,你如何设计?

BPF_ PROG_ TYPE_ SOCKET_ Filter function implementation

Pattern recognition - 1 Bayesian decision theory_ P1

为什么生命科学企业都在陆续上云?

【吴恩达笔记】卷积神经网络
![在每个树行中找最大值[分层遍历之一的扩展]](/img/5b/81ff20b61c0719ceb6873e44878859.png)
在每个树行中找最大值[分层遍历之一的扩展]
随机推荐
基于kruskal的最小生成树
#国企央企结构化面试#国企就业#墨斗互动就业服务管家
Structured interview of state-owned enterprises and central enterprises employment of state-owned enterprises Modou Interactive Employment Service steward
传输层 udp && tcp
Memcached full profiling – 1 Fundamentals of memcached
使用Adb连接设备时提示设备无权限
SAP接口debug设置外部断点
openGauss内核:简单查询的执行
03---增反膜
升哲科技 AI 智能防溺水服务上线
socket done
Implementing DNS requester with C language
Object.defineProperty和Reflect.defineProperty的容错问题
LeetCode-513. 找树左下角的值
02---纵波不可能产生的现象
并查集+建图
how to install clustershell
How to resolve the 35 year old crisis? Sharing of 20 years' technical experience of chief architect of Huawei cloud database
01---两列波在相遇处发生干涉的条件
拖动拖动拖动