当前位置:网站首页>Advanced Mathematics (Seventh Edition) Tongji University exercises 1-7 personal solutions

Advanced Mathematics (Seventh Edition) Tongji University exercises 1-7 personal solutions

2022-06-23 05:44:00 Navigator_ Z

Advanced mathematics ( The seventh edition ) Tongji University exercises 1-7

 

1.   When x → 0 when , 2 x − x 2 And x 2 − x 3 phase Than , which One individual yes high rank nothing poor Small ? \begin{aligned}&1. \ When x \rightarrow 0 when ,2x-x^2 And x^2-x^3 comparison , Which is the higher order infinitesimal ?&\end{aligned} 1.  When x0 when ,2xx2 And x2x3 phase Than , which One individual yes high rank nothing poor Small

Explain :

   because by lim ⁡ x → 0 ( 2 x − x 2 ) = 0 , lim ⁡ x → 0 ( x 2 − x 3 ) = 0 , lim ⁡ x → 0 x 2 − x 3 2 x − x 2 = lim ⁡ x → 0 x − x 2 2 − x = 0 ,    the With When x → 0 when , x 2 − x 3 yes Than 2 x − x 2 high rank Of nothing poor Small . \begin{aligned} &\ \ because \lim_{x \rightarrow 0}(2x-x^2)=0,\lim_{x \rightarrow 0}(x^2-x^3)=0, \lim_{x \rightarrow 0}{\frac{x^2-x^3}{2x-x^2}}=\lim_{x \rightarrow 0}{\frac{x-x^2}{2-x}}=0,\\\\ &\ \ So when x \rightarrow 0 when ,x^2-x^3 It's better than 2x-x^2 Infinitesimal of higher order . & \end{aligned}    because by x0lim(2xx2)=0,x0lim(x2x3)=0,x0lim2xx2x2x3=x0lim2xxx2=0,   the With When x0 when ,x2x3 yes Than 2xx2 high rank Of nothing poor Small .


2.   When x → 0 when , ( 1 − c o s   x ) 2 And s i n 2   x phase Than , which One individual yes high rank nothing poor Small ? \begin{aligned}&2. \ When x \rightarrow 0 when ,(1-cos\ x)^2 And sin^2\ x comparison , Which is the higher order infinitesimal ?&\end{aligned} 2.  When x0 when ,(1cos x)2 And sin2 x phase Than , which One individual yes high rank nothing poor Small

Explain :

   because by lim ⁡ x → 0 ( 1 − c o s   x ) 2 = 0 , lim ⁡ x → 0 s i n 2   x = 0 , lim ⁡ x → 0 ( 1 − c o s   x ) 2 s i n 2   x = lim ⁡ x → 0 ( 1 2 x 2 ) 2 x 2 = lim ⁡ x → 0 1 4 x 2 = 0 ,    the With When x → 0 when , ( 1 − c o s   x ) 2 yes Than s i n 2   x high rank Of nothing poor Small . \begin{aligned} &\ \ because \lim_{x \rightarrow 0}(1-cos\ x)^2=0,\lim_{x \rightarrow 0}sin^2\ x=0,\lim_{x \rightarrow 0}{\frac{(1-cos\ x)^2}{sin^2\ x}}=\lim_{x \rightarrow 0}{\frac{\left(\frac{1}{2}x^2\right)^2}{x^2}}=\lim_{x \rightarrow 0}{\frac{1}{4}x^2}=0,\\\\ &\ \ So when x \rightarrow 0 when ,(1-cos\ x)^2 It's better than sin^2\ x Infinitesimal of higher order . & \end{aligned}    because by x0lim(1cos x)2=0,x0limsin2 x=0,x0limsin2 x(1cos x)2=x0limx2(21x2)2=x0lim41x2=0,   the With When x0 when ,(1cos x)2 yes Than sin2 x high rank Of nothing poor Small .


3.   When x → 1 when , nothing poor Small 1 − x and ( 1 ) 1 − x 3 , ( 2 ) 1 2 ( 1 − x 2 ) yes no Same as rank , yes no etc. price ? \begin{aligned}&3. \ When x \rightarrow 1 when , An infinitesimal 1-x and (1)1-x^3,(2)\frac{1}{2}(1-x^2) Same order or not , Is it equivalent ?&\end{aligned} 3.  When x1 when , nothing poor Small 1x and (1)1x3,(2)21(1x2) yes no Same as rank , yes no etc. price

Explain :

   ( 1 )   because by lim ⁡ x → 1 1 − x 1 − x 3 = lim ⁡ x → 1 1 1 + x + x 2 = 1 3 , the With When x → 1 when , nothing poor Small 1 − x And 1 − x 3 Same as rank .    ( 2 )   because by lim ⁡ x → 1 1 − x 1 2 ( 1 − x 2 ) = lim ⁡ x → 1 2 1 + x = 1 , the With When x → 1 when , nothing poor Small 1 − x And 1 2 ( 1 − x 2 ) etc. price . \begin{aligned} &\ \ (1)\ because \lim_{x \rightarrow 1}\frac{1-x}{1-x^3}=\lim_{x \rightarrow 1}\frac{1}{1+x+x^2}=\frac{1}{3}, So when x \rightarrow 1 when , An infinitesimal 1-x And 1-x^3 Isomorphism .\\\\ &\ \ (2)\ because \lim_{x \rightarrow 1}\frac{1-x}{\frac{1}{2}(1-x^2)}=\lim_{x \rightarrow 1}\frac{2}{1+x}=1, So when x \rightarrow 1 when , An infinitesimal 1-x And \frac{1}{2}(1-x^2) Equivalent . & \end{aligned}   (1)  because by x1lim1x31x=x1lim1+x+x21=31, the With When x1 when , nothing poor Small 1x And 1x3 Same as rank .  (2)  because by x1lim21(1x2)1x=x1lim1+x2=1, the With When x1 when , nothing poor Small 1x And 21(1x2) etc. price .


4.   Prove bright : When x → 0 when , Yes \begin{aligned}&4. \ prove : When x \rightarrow 0 when , Yes &\end{aligned} 4.  Prove bright When x0 when , Yes

   ( 1 )    a r c t a n   x ∼ x ;                              ( 2 )    s e c   x − 1 ∼ x 2 2 \begin{aligned} &\ \ (1)\ \ arctan\ x \sim x;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ sec\ x-1 \sim \frac{x^2}{2} & \end{aligned}   (1)  arctan xx;                            (2)  sec x12x2

Explain :

   ( 1 )   Make x = t a n   t , t = a r c t a n   x , When x → 0 when , t → 0 . because by lim ⁡ x → 0 a r c t a n   x x = lim ⁡ t → 0 t t a n   t = 1 ,          the With When x → 0 when , a r c t a n   x ∼ x .    ( 2 )   because by lim ⁡ x → 0 s e c   x − 1 x 2 2 = lim ⁡ x → 0 1 − c o s   x c o s   x 1 2 x 2 = lim ⁡ x → 0 1 c o s   x = 1 ,          the With When x → 0 when , s e c   x − 1 ∼ x 2 2 . \begin{aligned} &\ \ (1)\ Make x=tan\ t,t=arctan\ x, When x \rightarrow 0 when ,t \rightarrow 0. because \lim_{x \rightarrow 0}\frac{arctan\ x}{x}=\lim_{t \rightarrow 0}\frac{t}{tan\ t}=1,\\\\ &\ \ \ \ \ \ \ \ So when x \rightarrow 0 when ,arctan\ x \sim x.\\\\ &\ \ (2)\ because \lim_{x \rightarrow 0}\frac{sec\ x-1}{\frac{x^2}{2}}=\lim_{x \rightarrow 0}\frac{\frac{1-cos\ x}{cos\ x}}{\frac{1}{2}x^2}=\lim_{x \rightarrow 0}\frac{1}{cos\ x}=1,\\\\ &\ \ \ \ \ \ \ \ So when x \rightarrow 0 when ,sec\ x -1 \sim \frac{x^2}{2}. & \end{aligned}   (1)  Make x=tan t,t=arctan x, When x0 when ,t0. because by x0limxarctan x=t0limtan tt=1,         the With When x0 when ,arctan xx.  (2)  because by x0lim2x2sec x1=x0lim21x2cos x1cos x=x0limcos x1=1,         the With When x0 when ,sec x12x2.


5.   benefit use etc. price nothing poor Small Of sex quality , seek Next Column extremely limit : \begin{aligned}&5. \ Using the property of equivalent infinitesimal , Find the following limit :&\end{aligned} 5.  benefit use etc. price nothing poor Small Of sex quality , seek Next Column extremely limit

   ( 1 )    lim ⁡ x → 0 t a n   3 x 2 x ;                              ( 2 )    lim ⁡ x → 0 s i n ( x n ) ( s i n   x ) m   ( n , m by just whole Count ) ;    ( 3 )    lim ⁡ x → 0 t a n   x − s i n   x s i n 3   x ;                  ( 4 )    lim ⁡ x → 0 s i n   x − t a n   x ( 1 + x 2 3 − 1 ) ( 1 + s i n   x − 1 ) \begin{aligned} &\ \ (1)\ \ \lim_{x \rightarrow 0}\frac{tan\ 3x}{2x};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \lim_{x \rightarrow 0}\frac{sin(x^n)}{(sin\ x)^m}\ (n,m As a positive integer );\\\\ &\ \ (3)\ \ \lim_{x \rightarrow 0}\frac{tan\ x-sin\ x}{sin^3\ x};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \lim_{x \rightarrow 0}\frac{sin\ x-tan\ x}{(\sqrt[3]{1+x^2}-1)(\sqrt{1+sin\ x}-1)} & \end{aligned}   (1)  x0lim2xtan 3x;                            (2)  x0lim(sin x)msin(xn) (n,m by just whole Count );  (3)  x0limsin3 xtan xsin x;                (4)  x0lim(31+x21)(1+sin x1)sin xtan x

Explain :

   ( 1 )   lim ⁡ x → 0 t a n   3 x 2 x = lim ⁡ x → 0 s i n   3 x 2 c o s   3 x ⋅ x = lim ⁡ x → 0 ( 3 2 ⋅ 1 c o s   3 x ⋅ s i n   3 x 3 x ) = 3 2    ( 2 )   lim ⁡ x → 0 s i n ( x n ) ( s i n   x ) m = lim ⁡ x → 0 x n x m = { 0 , n > m , 1 , n = m , ∞ , n < m .    ( 3 )   lim ⁡ x → 0 t a n   x − s i n   x s i n 3   x = lim ⁡ x → 0 s i n   x − s i n   x ⋅ c o s   x c o s   x ⋅ s i n 3   x = lim ⁡ x → 0 1 − c o s x c o s   x ⋅ s i n 2   x = lim ⁡ x → 0 1 2 c o s   x ⋅ s i n 2   x x 2 = 1 2    ( 4 )   lim ⁡ x → 0 s i n   x − t a n   x ( 1 + x 2 3 − 1 ) ( 1 + s i n   x − 1 ) = lim ⁡ x → 0 s i n   x ( 1 − s e c   x ) 1 3 x 2 ⋅ 1 2 s i n   x = lim ⁡ x → 0 − 1 2 x 2 1 6 x 2 = − 3 \begin{aligned} &\ \ (1)\ \lim_{x \rightarrow 0}\frac{tan\ 3x}{2x}=\lim_{x \rightarrow 0}\frac{sin\ 3x}{2cos\ 3x \cdot x}=\lim_{x \rightarrow 0}\left(\frac{3}{2} \cdot \frac{1}{cos\ 3x} \cdot \frac{sin\ 3x}{3x}\right)=\frac{3}{2}\\\\ &\ \ (2)\ \lim_{x \rightarrow 0}\frac{sin(x^n)}{(sin\ x)^m}=\lim_{x \rightarrow 0}\frac{x^n}{x^m}=\begin{cases}0,n \gt m,\\\\ 1,n =m,\\\\ \infty,n \lt m.\end{cases}\\\\ &\ \ (3)\ \lim_{x \rightarrow 0}\frac{tan\ x-sin\ x}{sin^3\ x}=\lim_{x \rightarrow 0}\frac{sin\ x-sin\ x \cdot cos\ x}{cos\ x \cdot sin^3\ x}=\lim_{x \rightarrow 0}\frac{1-cosx}{cos\ x \cdot sin^2\ x}=\lim_{x \rightarrow 0}\frac{1}{2cos\ x \cdot \frac{sin^2\ x}{x^2}}=\frac{1}{2}\\\\ &\ \ (4)\ \lim_{x \rightarrow 0}\frac{sin\ x-tan\ x}{(\sqrt[3]{1+x^2}-1)(\sqrt{1+sin\ x}-1)}=\lim_{x \rightarrow 0}\frac{sin\ x(1-sec\ x)}{\frac{1}{3}x^2 \cdot \frac{1}{2}sin\ x}=\lim_{x \rightarrow 0}\frac{-\frac{1}{2}x^2}{\frac{1}{6}x^2}=-3 & \end{aligned}   (1) x0lim2xtan 3x=x0lim2cos 3xxsin 3x=x0lim(23cos 3x13xsin 3x)=23  (2) x0lim(sin x)msin(xn)=x0limxmxn=0,n>m,1,n=m,,n<m.  (3) x0limsin3 xtan xsin x=x0limcos xsin3 xsin xsin xcos x=x0limcos xsin2 x1cosx=x0lim2cos xx2sin2 x1=21  (4) x0lim(31+x21)(1+sin x1)sin xtan x=x0lim31x221sin xsin x(1sec x)=x0lim61x221x2=3


6.   Prove bright nothing poor Small Of etc. price Turn off system have Yes Next Column sex quality : \begin{aligned}&6. \ It is proved that the equivalence relation of infinitesimal has the following properties :&\end{aligned} 6.  Prove bright nothing poor Small Of etc. price Turn off system have Yes Next Column sex quality

   ( 1 )    α ∼ α ( since back sex ) ;                         ( 2 )    if α ∼ β , be β ∼ α ( Yes call sex ) ;    ( 3 )    if α ∼ β , β ∼ γ , be α ∼ γ ( Pass on Deliver sex ) \begin{aligned} &\ \ (1)\ \ \alpha \sim \alpha( reflexivity );\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ if \alpha \sim \beta, be \beta \sim \alpha( symmetry );\\\\ &\ \ (3)\ \ if \alpha \sim \beta,\beta \sim \gamma, be \alpha \sim \gamma( Transitivity ) & \end{aligned}   (1)  αα since back sex ;                       (2)   if αβ, be βα Yes call sex ;  (3)   if αβ,βγ, be αγ Pass on Deliver sex

Explain :

   ( 1 )   because by lim ⁡ α α = 1 , the With α ∼ α ;    ( 2 )   because by α ∼ β , namely lim ⁡ α β = 1 , the With lim ⁡ β α = 1 , namely β ∼ α ;    ( 3 )   because by α ∼ β , β ∼ γ , namely lim ⁡ α β = 1 , lim ⁡ β γ = 1 , the With lim ⁡ α γ = lim ⁡ ( α β ⋅ β γ ) = lim ⁡ α β ⋅ lim ⁡ β γ = 1 , namely α ∼ γ \begin{aligned} &\ \ (1)\ because \lim{\frac{\alpha}{\alpha}}=1, therefore \alpha \sim \alpha;\\\\ &\ \ (2)\ because \alpha \sim \beta, namely \lim{\frac{\alpha}{\beta}}=1, therefore \lim{\frac{\beta}{\alpha}}=1, namely \beta \sim \alpha;\\\\ &\ \ (3)\ because \alpha \sim \beta,\beta \sim \gamma, namely \lim{\frac{\alpha}{\beta}}=1,\lim{\frac{\beta}{\gamma}}=1, therefore \lim{\frac{\alpha}{\gamma}}=\lim\left(\frac{\alpha}{\beta}\cdot \frac{\beta}{\gamma}\right)=\lim{\frac{\alpha}{\beta}} \cdot \lim{\frac{\beta}{\gamma}}=1, namely \alpha \sim \gamma & \end{aligned}   (1)  because by limαα=1, the With αα;  (2)  because by αβ, namely limβα=1, the With limαβ=1, namely βα;  (3)  because by αβ,βγ, namely limβα=1,limγβ=1, the With limγα=lim(βαγβ)=limβαlimγβ=1, namely αγ

原网站

版权声明
本文为[Navigator_ Z]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/174/202206230349185768.html