当前位置:网站首页>[Niu Ke's questions -sql big factory interview questions] no1 An audio short video
[Niu Ke's questions -sql big factory interview questions] no1 An audio short video
2022-06-22 03:51:00 【It bond】

Systematic learning SQL, Please go to the Niuke classic high frequency interview question bank , Participate in practical training , Improve your SQL Skills ~
https://www.nowcoder.com/link/pc_csdncpt_itbd_sql
List of articles
- Preface
- SQL1 Average completion rate of each video
- SQL2 The average playback progress is greater than 60% Video category
- SQL3 The forwarding volume of each type of video in recent one month / rate
- SQL4 The monthly rise rate of each creator and the total number of fans to date
- SQL5 During the national day, the number of likes and forwards of each type of video
- SQL6 The hottest video released in the past month top3 video
Preface
SQL Everyone has to use , But output is not measured by SQL In itself , You need to use this tool , To create other value .
SQL1 Average completion rate of each video
Create table statement
DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
CREATE TABLE tb_user_video_log (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT ' Self increasing ID',
uid INT NOT NULL COMMENT ' user ID',
video_id INT NOT NULL COMMENT ' video ID',
start_time datetime COMMENT ' Start watching time ',
end_time datetime COMMENT ' End viewing time ',
if_follow TINYINT COMMENT ' Whether to pay attention to ',
if_like TINYINT COMMENT ' Do you like it ',
if_retweet TINYINT COMMENT ' Whether to forward ',
comment_id INT COMMENT ' Comment on ID'
) CHARACTER SET utf8 COLLATE utf8_bin;
CREATE TABLE tb_video_info (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT ' Self increasing ID',
video_id INT UNIQUE NOT NULL COMMENT ' video ID',
author INT NOT NULL COMMENT ' Creator ID',
tag VARCHAR(16) NOT NULL COMMENT ' Category label ',
duration INT NOT NULL COMMENT ' Video duration ( Number of seconds )',
release_time datetime NOT NULL COMMENT ' Release time '
)CHARACTER SET utf8 COLLATE utf8_bin;
INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
(101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:30', 0, 1, 1, null),
(102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:24', 0, 0, 1, null),
(103, 2001, '2021-10-01 11:00:00', '2021-10-01 11:00:34', 0, 1, 0, 1732526),
(101, 2002, '2021-09-01 10:00:00', '2021-09-01 10:00:42', 1, 0, 1, null),
(102, 2002, '2021-10-01 11:00:00', '2021-10-01 11:00:30', 1, 0, 1, null);
INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
(2001, 901, ' Movies ', 30, '2021-01-01 7:00:00'),
(2002, 901, ' food ', 60, '2021-01-01 7:00:00'),
(2003, 902, ' tourism ', 90, '2021-01-01 7:00:00');
demand
problem : Calculation 2021 The completion rate of each video recorded in the year ( The result is three decimal places ), And sort them in descending order according to the completion rate
notes : Video completion rate refers to the proportion of completed playback times to the total playback times . Simplicity ,
The difference between the end viewing time and the start playing time >= Video duration , It is deemed to have finished playing .
answer
select a.video_id,
round(sum(case when timestampdiff(second,b.start_time,b.end_time)>=a.duration
then 1 else 0 end)/count(b.uid),3)
as avg_com_play_rate
from tb_video_info a join tb_user_video_log b on a.video_id=b.video_id
where YEAR(b.start_time) = 2021
group by a.video_id
order by avg_com_play_rate desc

SQL2 The average playback progress is greater than 60% Video category
Create table statement
DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
CREATE TABLE tb_user_video_log (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT ' Self increasing ID',
uid INT NOT NULL COMMENT ' user ID',
video_id INT NOT NULL COMMENT ' video ID',
start_time datetime COMMENT ' Start watching time ',
end_time datetime COMMENT ' End viewing time ',
if_follow TINYINT COMMENT ' Whether to pay attention to ',
if_like TINYINT COMMENT ' Do you like it ',
if_retweet TINYINT COMMENT ' Whether to forward ',
comment_id INT COMMENT ' Comment on ID'
) CHARACTER SET utf8 COLLATE utf8_bin;
CREATE TABLE tb_video_info (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT ' Self increasing ID',
video_id INT UNIQUE NOT NULL COMMENT ' video ID',
author INT NOT NULL COMMENT ' Creator ID',
tag VARCHAR(16) NOT NULL COMMENT ' Category label ',
duration INT NOT NULL COMMENT ' Video duration ( Number of seconds )',
release_time datetime NOT NULL COMMENT ' Release time '
)CHARACTER SET utf8 COLLATE utf8_bin;
INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
(101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:30', 0, 1, 1, null),
(102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:21', 0, 0, 1, null),
(103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:20', 0, 1, 0, 1732526),
(102, 2002, '2021-10-01 11:00:00', '2021-10-01 11:00:30', 1, 0, 1, null),
(103, 2002, '2021-10-01 10:59:05', '2021-10-01 11:00:05', 1, 0, 1, null);
INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
(2001, 901, ' Movies ', 30, '2021-01-01 7:00:00'),
(2002, 901, ' food ', 60, '2021-01-01 7:00:00'),
(2003, 902, ' tourism ', 90, '2020-01-01 7:00:00');
demand
problem : Calculate the average playback progress of various videos , Make progress greater than 60% Category output of .
notes :
Play progress = The broadcast time ÷ Video duration *100%, When the playback time is longer than the video time , The playback progress is recorded as 100%.
Two decimal places are reserved for the result , And sort them in reverse order according to the playback progress .
answer
select
tag,
concat(
ROUND(
avg(
if(
timestampdiff(second,start_time,end_time)>=duration,
1,timestampdiff(second,start_time,end_time)/duration
)
)*100
,2)
,'%') avg_play_progress
from
tb_user_video_log a join tb_video_info b
on a.video_id=b.video_id
group by b.tag
having avg(
if(
timestampdiff(second,start_time,end_time)>=duration,
1,timestampdiff(second,start_time,end_time)/duration
)
)>0.6
order by avg_play_progress desc

SQL3 The forwarding volume of each type of video in recent one month / rate
Create table statement
DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
CREATE TABLE tb_user_video_log (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT ' Self increasing ID',
uid INT NOT NULL COMMENT ' user ID',
video_id INT NOT NULL COMMENT ' video ID',
start_time datetime COMMENT ' Start watching time ',
end_time datetime COMMENT ' End viewing time ',
if_follow TINYINT COMMENT ' Whether to pay attention to ',
if_like TINYINT COMMENT ' Do you like it ',
if_retweet TINYINT COMMENT ' Whether to forward ',
comment_id INT COMMENT ' Comment on ID'
) CHARACTER SET utf8 COLLATE utf8_bin;
CREATE TABLE tb_video_info (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT ' Self increasing ID',
video_id INT UNIQUE NOT NULL COMMENT ' video ID',
author INT NOT NULL COMMENT ' Creator ID',
tag VARCHAR(16) NOT NULL COMMENT ' Category label ',
duration INT NOT NULL COMMENT ' Video duration ( Number of seconds )',
release_time datetime NOT NULL COMMENT ' Release time '
)CHARACTER SET utf8 COLLATE utf8_bin;
INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
(101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:20', 0, 1, 1, null)
,(102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:15', 0, 0, 1, null)
,(103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:15', 0, 1, 0, 1732526)
,(102, 2002, '2021-09-10 11:00:00', '2021-09-10 11:00:30', 1, 0, 1, null)
,(103, 2002, '2021-10-01 10:59:05', '2021-10-01 11:00:05', 1, 0, 0, null);
INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
(2001, 901, ' Movies ', 30, '2021-01-01 7:00:00')
,(2002, 901, ' food ', 60, '2021-01-01 7:00:00')
,(2003, 902, ' tourism ', 90, '2020-01-01 7:00:00');
demand
problem : Statistics in the last month with user interaction ( Press near... Including the current day 30 God knows ,
such as 10 month 31 Near the sun 30 Tianwei 10.2~10.31 Data between ) in , Forwarding volume and forwarding rate of each type of video ( Retain 3 Decimal place ).
notes : Forwarding rate = Forwarding volume ÷ Play volume . The results are sorted in descending order of forwarding rate .
answer
select b.tag, sum(if_retweet) retweet_cnt,
round(sum(if_retweet)/count(1),3) retweet_rate from
tb_user_video_log a
left join tb_video_info b
on a.video_id = b.video_id
where DATEDIFF(DATE((select max(start_time) from tb_user_video_log)) ,
DATE(start_time)) <= 29
group by b.tag
order by 2 desc

SQL4 The monthly rise rate of each creator and the total number of fans to date
Create table statement
DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
CREATE TABLE tb_user_video_log (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT ' Self increasing ID',
uid INT NOT NULL COMMENT ' user ID',
video_id INT NOT NULL COMMENT ' video ID',
start_time datetime COMMENT ' Start watching time ',
end_time datetime COMMENT ' End viewing time ',
if_follow TINYINT COMMENT ' Whether to pay attention to ',
if_like TINYINT COMMENT ' Do you like it ',
if_retweet TINYINT COMMENT ' Whether to forward ',
comment_id INT COMMENT ' Comment on ID'
) CHARACTER SET utf8 COLLATE utf8_bin;
CREATE TABLE tb_video_info (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT ' Self increasing ID',
video_id INT UNIQUE NOT NULL COMMENT ' video ID',
author INT NOT NULL COMMENT ' Creator ID',
tag VARCHAR(16) NOT NULL COMMENT ' Category label ',
duration INT NOT NULL COMMENT ' Video duration ( Number of seconds )',
release_time datetime NOT NULL COMMENT ' Release time '
)CHARACTER SET utf8 COLLATE utf8_bin;
INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
(101, 2001, '2021-09-01 10:00:00', '2021-09-01 10:00:20', 0, 1, 1, null)
,(105, 2002, '2021-09-10 11:00:00', '2021-09-10 11:00:30', 1, 0, 1, null)
,(101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:20', 1, 1, 1, null)
,(102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:15', 0, 0, 1, null)
,(103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:15', 1, 1, 0, 1732526)
,(106, 2002, '2021-10-01 10:59:05', '2021-10-01 11:00:05', 2, 0, 0, null);
INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
(2001, 901, ' Movies ', 30, '2021-01-01 7:00:00')
,(2002, 901, ' Movies ', 60, '2021-01-01 7:00:00')
,(2003, 902, ' tourism ', 90, '2020-01-01 7:00:00')
,(2004, 902, ' beauty ', 90, '2020-01-01 8:00:00');
demand
problem : Calculation 2021 The monthly fan growth rate of each creator in the year and the total number of fans by the end of the month
notes :
Powder expansion rate =( Powder addition - Powder loss ) / Play volume . Results by Creator ID、 The total number of fans is sorted in ascending order .
if_follow- Whether to focus on 1 Indicates that the user pays attention to the video creator when watching the video ,
by 0 It indicates that the attention status has not changed before and after this interaction , by 2 It means that the attention has been cancelled during this viewing .
answer
SELECT B.AUTHOR AS AUTHOR,DATE_FORMAT(A.start_time,'%Y-%m') AS MONTH ,
ROUND((COUNT(CASE WHEN A.if_follow=1 THEN 1 END ) -
COUNT(CASE WHEN A.if_follow=2 THEN 1 END ))/COUNT(1) ,3)
AS FANS_GROWTH_RATE,
sum(sum(case when A.if_follow = 1 then 1
when A.if_follow = 2 then -1
else 0 end) ) over (partition by B.author
order by date_format(A.start_time,'%Y-%m'))
fans_total
FROM tb_user_video_log A
LEFT JOIN tb_video_info B
ON A.VIDEO_ID=B.video_id
WHERE year(A.start_time)=2021
and year(A.end_time)=2021
GROUP BY B.AUTHOR,DATE_FORMAT(A.start_time,'%Y-%m')
ORDER BY AUTHOR,fans_total

SQL5 During the national day, the number of likes and forwards of each type of video
Create table statement
DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
CREATE TABLE tb_user_video_log (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT ' Self increasing ID',
uid INT NOT NULL COMMENT ' user ID',
video_id INT NOT NULL COMMENT ' video ID',
start_time datetime COMMENT ' Start watching time ',
end_time datetime COMMENT ' End viewing time ',
if_follow TINYINT COMMENT ' Whether to pay attention to ',
if_like TINYINT COMMENT ' Do you like it ',
if_retweet TINYINT COMMENT ' Whether to forward ',
comment_id INT COMMENT ' Comment on ID'
) CHARACTER SET utf8 COLLATE utf8_bin;
CREATE TABLE tb_video_info (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT ' Self increasing ID',
video_id INT UNIQUE NOT NULL COMMENT ' video ID',
author INT NOT NULL COMMENT ' Creator ID',
tag VARCHAR(16) NOT NULL COMMENT ' Category label ',
duration INT NOT NULL COMMENT ' Video duration ( Number of seconds )',
release_time datetime NOT NULL COMMENT ' Release time '
)CHARACTER SET utf8 COLLATE utf8_bin;
INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
(101, 2001, '2021-09-24 10:00:00', '2021-09-24 10:00:20', 1, 1, 0, null)
,(105, 2002, '2021-09-25 11:00:00', '2021-09-25 11:00:30', 0, 0, 1, null)
,(102, 2002, '2021-09-25 11:00:00', '2021-09-25 11:00:30', 1, 1, 1, null)
,(101, 2002, '2021-09-26 11:00:00', '2021-09-26 11:00:30', 1, 0, 1, null)
,(101, 2002, '2021-09-27 11:00:00', '2021-09-27 11:00:30', 1, 1, 0, null)
,(102, 2002, '2021-09-28 11:00:00', '2021-09-28 11:00:30', 1, 0, 1, null)
,(103, 2002, '2021-09-29 11:00:00', '2021-09-29 11:00:30', 1, 0, 1, null)
,(102, 2002, '2021-09-30 11:00:00', '2021-09-30 11:00:30', 1, 1, 1, null)
,(101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:20', 1, 1, 0, null)
,(102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:15', 0, 0, 1, null)
,(103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:15', 1, 1, 0, 1732526)
,(106, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 2, 0, 1, null)
,(107, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 1, 0, 1, null)
,(108, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 1, 1, 1, null)
,(109, 2002, '2021-10-03 10:59:05', '2021-10-03 11:00:05', 0, 1, 0, null);
INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
(2001, 901, ' tourism ', 30, '2020-01-01 7:00:00')
,(2002, 901, ' tourism ', 60, '2021-01-01 7:00:00')
,(2003, 902, ' Movies ', 90, '2020-01-01 7:00:00')
,(2004, 902, ' beauty ', 90, '2020-01-01 8:00:00');
demand
problem : Statistics 2021 National Day head 3 The daily total likes of each type of video in the past week and the maximum forwarding volume in a single day in a week ,
The results are in descending order by video category 、 Sort dates in ascending order . Suppose there is enough data in the database ,
At least the national day head under each category 3 Every day of the day and the previous week .
answer
select t1.tag,t1.day,sum(t2.likes),max(t2.retweet)
FROM
(select t2.tag ,left(t1.start_time,10) day,
sum(t1.if_like) as likes,sum(t1.if_retweet) as retweet
from tb_user_video_log t1 left join
tb_video_info t2
on t1.video_id=t2.video_id
group by t2.tag,day) t1
left join
(select t2.tag ,left(t1.start_time,10) day,
sum(t1.if_like) as likes,sum(t1.if_retweet) as retweet
from tb_user_video_log t1 left join
tb_video_info t2
on t1.video_id=t2.video_id
group by t2.tag,day) t2
on t1.tag=t2.tag
where TIMESTAMPDIFF(day,t2.day,t1.day)<7
and TIMESTAMPDIFF(day,t2.day,t1.day)>=0
and t1.day in ("2021-10-01","2021-10-02","2021-10-03")
group by t1.tag,t1.day

SQL6 The hottest video released in the past month top3 video
Create table statement
DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
CREATE TABLE tb_user_video_log (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT ' Self increasing ID',
uid INT NOT NULL COMMENT ' user ID',
video_id INT NOT NULL COMMENT ' video ID',
start_time datetime COMMENT ' Start watching time ',
end_time datetime COMMENT ' End viewing time ',
if_follow TINYINT COMMENT ' Whether to pay attention to ',
if_like TINYINT COMMENT ' Do you like it ',
if_retweet TINYINT COMMENT ' Whether to forward ',
comment_id INT COMMENT ' Comment on ID'
) CHARACTER SET utf8 COLLATE utf8_bin;
CREATE TABLE tb_video_info (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT ' Self increasing ID',
video_id INT UNIQUE NOT NULL COMMENT ' video ID',
author INT NOT NULL COMMENT ' Creator ID',
tag VARCHAR(16) NOT NULL COMMENT ' Category label ',
duration INT NOT NULL COMMENT ' Video duration ( Number of seconds )',
release_time datetime NOT NULL COMMENT ' Release time '
)CHARACTER SET utf8 COLLATE utf8_bin;
INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
(101, 2001, '2021-09-24 10:00:00', '2021-09-24 10:00:30', 1, 1, 1, null)
,(101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:31', 1, 1, 0, null)
,(102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:35', 0, 0, 1, null)
,(103, 2001, '2021-10-03 11:00:50', '2021-10-03 11:01:35', 1, 1, 0, 1732526)
,(106, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:04', 2, 0, 1, null)
,(107, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:06', 1, 0, 0, null)
,(108, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 1, 1, 1, null)
,(109, 2002, '2021-10-03 10:59:05', '2021-10-03 11:00:01', 0, 1, 0, null)
,(105, 2002, '2021-09-25 11:00:00', '2021-09-25 11:00:30', 1, 0, 1, null)
,(101, 2003, '2021-09-26 11:00:00', '2021-09-26 11:00:30', 1, 0, 0, null)
,(101, 2003, '2021-09-30 11:00:00', '2021-09-30 11:00:30', 1, 1, 0, null);
INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
(2001, 901, ' tourism ', 30, '2021-09-05 7:00:00')
,(2002, 901, ' tourism ', 60, '2021-09-05 7:00:00')
,(2003, 902, ' Movies ', 90, '2021-09-05 7:00:00')
,(2004, 902, ' Movies ', 90, '2021-09-05 8:00:00');
demand
problem : Find the most popular video released in the past month top3 video .
notes :
degree of heat =(a* Video completion rate +b* Number of likes +c* comments +d* Forwarding number )* Freshness ;
Freshness =1/( Number of days not played recently +1);
Currently configured parameters a,b,c,d Respectively 100、5、3、2.
The most recent playback date is in end_time- The end viewing time shall prevail , Assuming that T, Press... In the last month [T-29, T] Closed interval statistics .
The heat in the result is kept as an integer , And in descending order of heat .
answer
select t1.video_id
,round(
((sum(case when timestampdiff(second,start_time,end_time)>=duration
then 1 else 0 end ))/count(*)*100
+sum(if_like)*5
+count(comment_id)*3
+sum(if_retweet)*2)
*
1/(DATEDIFF((select date(max(end_time)) from tb_user_video_log),
date(max(end_time)))+1)
) as hot_index
from tb_user_video_log t1,tb_video_info t2
where t1.video_id=t2.video_id
and DATEDIFF(DATE((SELECT MAX(end_time) FROM tb_user_video_log)),
DATE(release_time)) <= 29
group by t1.video_id
order by hot_index desc
limiT 3


边栏推荐
- 2019年全国职业院校技能大赛中职组“网络空间安全”正式赛卷及其“答案”
- How to break through the sales dilemma of clothing stores
- 【BP回归预测】基于matlab GA优化BP回归预测(含优化前的对比)【含Matlab源码 1901期】
- How to realize SVN efficient management
- Interviewer: do you know the life cycle of flutter?
- 便捷自在掌握,vivo智能遥控功能实现全屋家电控制
- 倍福TwinCAT3第三方伺服电机——以汇川IS620N伺服为例子
- Flutter-渲染原理&三棵树详解
- Wireshark packet analysis Wireshark 0051 pcap
- Flutter performance optimization
猜你喜欢

Cloud native architecture (02) - what is cloud native

Some journals of C51

详细专业的软件功能测试报告应该怎样书写

Beifu TwinCAT sets the scanning cycle and operation cycle method of PLC

Wechat applet ChAT expression

Twitter如何去中心化?看看这十个SocialFi项目

Dynamic planning - Taking stair climbing with minimum cost as an example

Mysql 45讲学习笔记(二)SQL更新语句的执行

NLog自定义Target之MQTT

我在华为度过的 “两辈子”(学习那些在大厂表现优秀的人)
随机推荐
The following assertion was thrown during performlayout
MySQL 45 lecture learning notes (II) execution of SQL update statements
WPF 实现星空效果
Mqtt of NLog custom target
1299. replace each element with the largest element on the right
LeetCode --- 1221. Split a String in Balanced Strings 解题报告
倍福TwinCAT3控制器和控制器间的Ads通讯
How to read and write files efficiently
【第23天】给定一个长度为 n 的数组,返回删除第 X 位元素后的数组 | 数组删除操作
How to randomly assign 1000 to 10 numbers
IIR滤波器设计基础及Matlab设计示例
Sword finger offer 68 - I. nearest common ancestor of binary search tree
svn与cvs的区别有哪些
倍福TwinCAT3中PLC程序变量定义和硬件IO关联
2019年全国职业院校技能大赛中职组“网络空间安全”正式赛卷及其“答案”
C language integer value range - the problem of more than one negative number
系统漏洞利用与提权
Float floating point number understanding
达梦数据库客户端屏蔽sql关键字
Analyzing iceberg merge tasks to resolve data conflicts