当前位置:网站首页>划分数据1
划分数据1
2022-07-24 10:29:00 【nb1232】
import math
import numpy as np
import torch
from torch import nn
import matplotlib.pyplot as plt
import torchvision.datasets as datasets
from torch.utils import data
from torchvision import transforms
from torch.utils.data import Dataset
import torchvision
train_data=datasets.CIFAR10(root="../data", train=True, transform=transforms.ToTensor(), download=True)
test_data=datasets.CIFAR10(root="../data", train=False, transform=transforms.ToTensor(), download=True)
t0=[ i for i, x in enumerate(train_data.targets) if x == 0]
t1=[ i for i, x in enumerate(train_data.targets) if x == 1]
t2=[ i for i, x in enumerate(train_data.targets) if x == 2]
t3=[ i for i, x in enumerate(train_data.targets) if x == 3]
t4=[ i for i, x in enumerate(train_data.targets) if x == 4]
t5=[ i for i, x in enumerate(train_data.targets) if x == 5]
t6=[ i for i, x in enumerate(train_data.targets) if x == 6]
t7=[ i for i, x in enumerate(train_data.targets) if x == 7]
t8=[ i for i, x in enumerate(train_data.targets) if x == 8]
t9=[ i for i, x in enumerate(train_data.targets) if x == 9]
label0=[]
for i in t0:
label0.append(train_data.targets[i])
label1=[]
for i in t1:
label1.append(train_data.targets[i])
label2=[]
for i in t2:
label2.append(train_data.targets[i])
label3=[]
for i in t3:
label3.append(train_data.targets[i])
label4=[]
for i in t4:
label4.append(train_data.targets[i])
label5=[]
for i in t5:
label5.append(train_data.targets[i])
label6=[]
for i in t6:
label6.append(train_data.targets[i])
label7=[]
for i in t7:
label7.append(train_data.targets[i])
label8=[]
for i in t8:
label8.append(train_data.targets[i])
label9=[]
for i in t9:
label9.append(train_data.targets[i])
data0=np.array([])
for i in t0:
data0=np.append(data0,train_data.data[i])
data1=np.array([])
for i in t1:
data1=np.append(data1,train_data.data[i])
data2=np.array([])
for i in t2:
data2=np.append(data2,train_data.data[i])
data3=np.array([])
for i in t3:
data3=np.append(data3,train_data.data[i])
data4=np.array([])
for i in t4:
data4=np.append(data4,train_data.data[i])
data5=np.array([])
for i in t5:
data5=np.append(data5,train_data.data[i])
data6=np.array([])
for i in t6:
data6=np.append(data6,train_data.data[i])
data7=np.array([])
for i in t7:
data7=np.append(data7,train_data.data[i])
data8=np.array([])
for i in t8:
data8=np.append(data8,train_data.data[i])
data9=np.array([])
for i in t9:
data9=np.append(data9,train_data.data[i])
data0=data0.reshape(len(label0),32,32,3)
data1=data1.reshape(len(label1),32,32,3)
data2=data2.reshape(len(label2),32,32,3)
data3=data3.reshape(len(label3),32,32,3)
data4=data4.reshape(len(label4),32,32,3)
data5=data5.reshape(len(label5),32,32,3)
data6=data6.reshape(len(label6),32,32,3)
data7=data7.reshape(len(label7),32,32,3)
data8=data8.reshape(len(label8),32,32,3)
data9=data9.reshape(len(label9),32,32,3)
class DatasetXY(Dataset):
def __init__(self, x, y):
self._x = x
self._y = y
self._len = len(x)
def __getitem__(self, item): # 每次循环的时候返回的值
return self._x[item], self._y[item]
def __len__(self):
return self._len
dataset0= DatasetXY(data0,label0)
dataset1= DatasetXY(data1,label1)
dataset2= DatasetXY(data2,label2)
dataset3= DatasetXY(data3,label3)
dataset4= DatasetXY(data4,label4)
dataset5= DatasetXY(data5,label5)
dataset6= DatasetXY(data6,label6)
dataset7= DatasetXY(data7,label7)
dataset8= DatasetXY(data8,label8)
dataset9= DatasetXY(data9,label9)
train1_iter=data.DataLoader(dataset0,batch_size=32,num_workers=0)
边栏推荐
- Analysis of Kube proxy IPVS mode
- Programmers can't JVM? Ashes Engineer: all waiting to be eliminated! This is a must skill!
- Uniapp calendar component
- PostgreSQL rounding
- Add a love power logo to your website
- PC博物馆(1) 1970年 Datapoint 2000
- 第五章 修改实现(IMPL)类
- Create a vertical seekbar from scratch
- [correcting Hongming] what? I forgot to take the "math required course"!
- The role of glpushmatrix and glpopmatrix
猜你喜欢

MySQL - 多列索引

MySQL - 普通索引

How to build a node development environment efficiently

What did zoneawareloadbalancer of ribbon and its parent class do?

The concept and representation of a tree

很佩服的一个Google大佬,离职了。。
![[electronic device note 3] capacitance parameters and type selection](/img/d2/1ddb309a8f3cfe5f65c71964052006.png)
[electronic device note 3] capacitance parameters and type selection

高精尖中心论文入选国际顶会ACL 2022,进一步拓展长安链隐私计算能力

Query about operating system security patch information

2022, enterprise informatization construction based on Unified Process Platform refers to thubierv0.1
随机推荐
【LeeCode】获取2个字符串的最长公共子串
多表查询之子查询_单行单列情况
Android uses JDBC to connect to a remote database
[carving master learning programming] Arduino hands-on (59) - RS232 to TTL serial port module
Scaffold document directory description and document exposure
Sentinel 实现 pull 模式规则持久化
图模型2--2022-5-13
JS function call download file link
Balance between management / business and technology
NiO knowledge points
MySQL performance optimization (IV): how to use indexes efficiently and correctly
2022, will lead the implementation of operation and maintenance priority strategy
Analysis of distributed lock redistribution principle
This usage, SystemVerilog syntax
《nlp入门+实战:第二章:pytorch的入门使用 》
Simply use golang SQLC to generate MySQL query code
zoj 2770 差分约束系统---2--2022年5月20日
常量指针、指针常量
Constant pointer, pointer constant
Arduino + AD9833 waveform generator