当前位置:网站首页>Am, FM, PM modulation technology
Am, FM, PM modulation technology
2022-06-24 21:09:00 【yindq1220】
AM modulation — Amplitude modulation
Concept
Make the amplitude of the carrier wave change according to the change law of the required transmission signal , But the modulation method with constant frequency .
Advantages and disadvantages
Long propagation distance , But the anti-interference ability is poor .
classification
Common amplitude modulation :AM
Bilateral band amplitude modulation :DSB-AM
Single sideband amplitude modulation :SSB_AM
Residual sideband banner :VSB_AM
Modulation signal expression transfer system Letter Number : U Ω ( t ) = U Ω m cos Ω t { Modulation signal :U_{\Omega}(t)\ = \ \ U_{\Omega m}\cos}{\Omega t} transfer system Letter Number :UΩ(t) = UΩmcosΩt
load wave Letter Number : U c ( t ) = U cm c o s ( w c t ) carrier signal {:U}_{c}(t)\ \ \ = \ \ U_{\text{cm}}cos(w_{c}t) load wave Letter Number :Uc(t) = Ucmcos(wct)
because AM The frequency of the modulation does not change , Adopt the frequency of carrier signal , The amplitude varies with the transmitted signal , therefore AM The expression of the modulated signal is :
has transfer Letter Number : U AM ( t ) = U m ( t ) c o s ( w c t ) Modulated signal :U_{\text{AM}}(t)\ = \ U_{m}(t)cos(w_{c}t)\ has transfer Letter Number :UAM(t) = Um(t)cos(wct)
= ( U cm + K a U Ω m cos Ω t ) c o s ( w c t ) \ = (U_{\text{cm}}{+ K_{a}U}_{\Omega m}\cos\Omega t)cos(w_{c}t)\ =(Ucm+KaUΩmcosΩt)cos(wct)
= U cm ( 1 + K a U Ω m U cm cos Ω t ) c o s ( w c t ) = U_{\text{cm}}(1 + K_{a}\frac{U_{\Omega m}}{U_{\text{cm}}}\cos\Omega t)cos(w_{c}t)\ =Ucm(1+KaUcmUΩmcosΩt)cos(wct)
among m a m_{a} ma Is the amplitude modulation coefficient : m a m_{a} ma= K a U Ω m U cm K_{a}\frac{U_{\Omega m}}{U_{\text{cm}}} KaUcmUΩm
Maximum amplitude of AM signal : U m U_{m} Um(max)=( U cm ( 1 + m a U_{\text{cm}}(1 + m_{a} Ucm(1+ma)
Minimum amplitude of AM signal : U m U_{m} Um(min)=( U cm ( 1 − m a U_{\text{cm}}(1 - m_{a} Ucm(1−ma)
So when m a m_{a} ma>1 when , Over modulation will occur , That is, the minimum value of AM signal is negative .

take U AM ( t ) = U_{\text{AM}}(t)\ = UAM(t) = U cm U_{\text{cm}} Ucm(1 + m a m_{\text{a}} macos Ω \Omega Ω t)cos( w c t ) w_{\text{c}}t) wct) Continue to expand to get :
U AM ( t ) = U cm c o s ( w c t ) + 1 2 ma U cm c o s ( w c + Ω ) t + 1 2 ma U cm c o s ( w c − Ω ) t U_{\text{AM}}(t) = U_{\text{cm}}cos(w_{c}t) + \frac{1}{2}\text{ma}U_{\text{cm}}cos(w_{c} + \Omega)t + \ \frac{1}{2}\text{ma}U_{\text{cm}}cos(w_{c} - \Omega)t UAM(t)=Ucmcos(wct)+21maUcmcos(wc+Ω)t+ 21maUcmcos(wc−Ω)t
Therefore, it is known that the modulated wave contains three frequency components w c 、 w c + Ω ( On edge frequency ) w_{c}、w_{c} + \Omega( Upper sideband ) wc、wc+Ω( On edge frequency )、 w c − Ω w_{c} - \Omega wc−Ω( Lower sideband )
FM modulation ---- Frequency modulation
Concept
The amplitude of the carrier wave does not change , The instantaneous angular frequency changes linearly with the modulation signal .
Advantages and disadvantages
Strong anti-interference , But the transmission distance is short .
Modulation signal expression
transfer system Letter Number : U Ω ( t ) = U Ω m cos ( Ω t ) { Modulation signal :U_{\Omega}(t)\ = \ \ U_{\Omega m}\cos}{(\Omega t)} transfer system Letter Number :UΩ(t) = UΩmcos(Ωt)
load wave Letter Number : U c ( t ) = U cm c o s ( w c t ) carrier signal {:U}_{c}(t)\ \ \ = \ \ U_{\text{cm}}cos(w_{c}t) load wave Letter Number :Uc(t) = Ucmcos(wct)
FM The instantaneous angular frequency of the modulation is :
w f ( t ) = w c + k f U Ω ( t ) = w c + k f U Ω m cos Ω t = w c + Δ w fm cos Ω t \ w_{f}(t) = w_{c} + k_{f}U_{\Omega}(t)\ = \ w_{c} + k_{f}{U_{\Omega m}\cos}{\Omega t} = w_{c} + \mathrm{\Delta}w_{\text{fm}}\cos{\Omega t}\ wf(t)=wc+kfUΩ(t) = wc+kfUΩmcosΩt=wc+ΔwfmcosΩt
among , w c w_{c} wc Is the carrier angular frequency ;
k f k_{f} kf Is the frequency modulation sensitivity , Indicates the frequency change caused by unit modulation signal amplitude , Unit is rad/s.V perhaps hz/V;
Δ w fm \mathrm{\Delta}w_{\text{fm}} Δwfm Is the maximum angular frequency offset of FM wave , Express FM Amplitude of wave frequency oscillation ; Δ w fm \mathrm{\Delta}w_{\text{fm}} Δwfm= k f U Ω m k_{f}U_{\Omega m} kfUΩm
transfer frequency system Count m f = Δ w fm Ω = k f U Ω m Ω = Δ f m F = Δ φ fm Frequency modulation coefficient \ m_{f} = \frac{\mathrm{\Delta}w_{\text{fm}}}{\Omega} = \frac{k_{f}U_{\Omega m}}{\Omega} = \frac{\mathrm{\Delta}f_{m}}{F} = \mathrm{\Delta}\varphi_{\text{fm}} transfer frequency system Count mf=ΩΔwfm=ΩkfUΩm=FΔfm=Δφfm, Add the additional maximum phase offset to the phase of the carrier signal during time-frequency modulation , And U Ω m \ U_{\Omega m} UΩm In direct proportion to , And Ω \Omega Ω In inverse proportion .
Therefore, the signal has been adjusted
U fm ( t ) = U cm cos ( w f ( t ) ∗ t ) = U cm cos ( w c t + m f s i n ( Ω t ) ) {U_{\text{fm}}(t) = U_{\text{cm}}\cos}{(w_{f}(t) \ast t)} = U_{\text{cm}}\cos(w_{c}t + m_{f}\ sin(\Omega t)) Ufm(t)=Ucmcos(wf(t)∗t)=Ucmcos(wct+mf sin(Ωt))
Converted to U fm ( t ) = U cm cos ( w f ( t ) ∗ t ) = U cm cos ( w c t + k f ∫ 0 t U Ω ( t ) d t ) {U_{\text{fm}}(t) = U_{\text{cm}}\cos}{(w_{f}(t) \ast t)} = U_{\text{cm}}\cos(w_{c}t + k_{f}\ \int_{0}^{t}{U_{\Omega}(t)}dt) Ufm(t)=Ucmcos(wf(t)∗t)=Ucmcos(wct+kf ∫0tUΩ(t)dt)
Come to the conclusion , FM time , The instantaneous angular frequency changes linearly with the modulated signal , The change of instantaneous phase is linear with the integral of modulated signal . FM time , Frequency offset reflects the change law of modulated signal , The phase offset is proportional to the integral of the modulated signal .

From the frequency modulation waveform , The waveform of FM wave is equal amplitude density wave , The density of the waveform reflects the magnitude of the instantaneous angular frequency of the FM wave , That is, the size of the modulated signal .
PM modulation — Phase modulation
transfer system Letter Number : U Ω ( t ) = U Ω m cos ( Ω t ) { Modulation signal :U_{\Omega}(t)\ = \ \ U_{\Omega m}\cos}{(\Omega t)} transfer system Letter Number :UΩ(t) = UΩmcos(Ωt)
load wave Letter Number : U c ( t ) = U cm c o s ( w c t ) carrier signal {:U}_{c}(t)\ \ \ = \ \ U_{\text{cm}}cos(w_{c}t) load wave Letter Number :Uc(t) = Ucmcos(wct)
Instantaneous phase of phase modulated signal :
φ ( t ) = w c t + k p U Ω ( t ) = w c t + k p U Ω m cos Ω t \varphi(t)\ = w_{c}t + k_{p}U_{\Omega}(t)\ = \ w_{c}t + k_{p}{U_{\Omega m}\cos}{\Omega t} φ(t) =wct+kpUΩ(t) = wct+kpUΩmcosΩt
The instantaneous angular frequency is :
w ( t ) = d φ ( t ) dt = w c + k p d U Ω ( t ) dt = w c + k p U Ω ( t ) w(t) = {\frac{d\varphi(t)}{\text{dt}} = w_{c} + k_{p}\frac{ {dU}_{\Omega}(t)\ }{\text{dt}} = w}_{c} + k_{p}U_{\Omega}(t)\ w(t)=dtdφ(t)=wc+kpdtdUΩ(t) =wc+kpUΩ(t)
among , k p k_{p} kp Is the modulation coefficient .
The general expression of phase modulated wave can be calculated :
U p m ( t ) = U cm cos ( φ ( t ) ) = U cm cos ( w c t + k p U Ω ( t ) ) {U_{pm}(t) = U_{\text{cm}}\cos}{(\varphi(t))} = U_{\text{cm}}\cos(w_{c}t + k_{p}U_{\Omega}(t)\ ) Upm(t)=Ucmcos(φ(t))=Ucmcos(wct+kpUΩ(t) )
The difference between frequency modulation and phase modulation
Frequency modulation and phase modulation will cause the carrier to change in frequency and phase , But the law of their changes is different , Frequency modulation is that the angular frequency of the carrier varies with the modulated signal , Phase modulation means that the phase of the carrier wave changes with the modulation signal .

边栏推荐
- Shell script
- Microsoft Certification (dynamic 365) test
- Rip/ospf protocol notes sorting
- maptalks:数据归一化处理与分层设色图层加载
- I just purchased a MySQL database and prompted that there are already instances. The console login instance needs to provide a database account. How do I know the database account.
- DAPP system customization of full chain hash game (scheme design)
- List set Introduction & common methods
- 全上链哈希游戏dapp系统定制(方案设计)
- 伯克利、MIT、劍橋、DeepMind等業內大佬線上講座:邁向安全可靠可控的AI
- NPM download speed is slow
猜你喜欢

Leetcode(135)——分发糖果

Berkeley, MIT, Cambridge, deepmind et d'autres grandes conférences en ligne: vers une IA sûre, fiable et contrôlable

Nifi fast authentication configuration

A/b test helps the growth of game business

Basic concepts and definitions of Graphs

Static routing job

Grating diffraction

Mapstacks: data normalization and layered color layer loading

Difference between map and object

The difference between RPC and restful
随机推荐
JMeter response assertion
JUnit unit test
Wechat applet custom tabbar
Typescript syntax
After idea installs these plug-ins, the code can be written to heaven. My little sister also has to arrange it
maptalks:数据归一化处理与分层设色图层加载
Builder mode -- Master asked me to refine pills
Rip/ospf protocol notes sorting
JMeter basic learning records
How to enhance influence
顺序栈1.0版本
Leetcode(455)——分发饼干
畅直播|针对直播痛点的关键技术解析
go_ keyword
How Fiddler works
Responsibility chain mode -- through interview
[performance tuning basics] performance tuning standards
Basic concepts and definitions of Graphs
Mr. Hu Bo, CIO of weiduomei, a scientific innovator: digitalization is a bloodless revolution, and the correct answer lies in the field of business
伯克利、MIT、劍橋、DeepMind等業內大佬線上講座:邁向安全可靠可控的AI