当前位置:网站首页>Am, FM, PM modulation technology

Am, FM, PM modulation technology

2022-06-24 21:09:00 yindq1220

AM modulation — Amplitude modulation

  1. Concept

    Make the amplitude of the carrier wave change according to the change law of the required transmission signal , But the modulation method with constant frequency .

  2. Advantages and disadvantages

    Long propagation distance , But the anti-interference ability is poor .

  3. classification

    Common amplitude modulation :AM

    Bilateral band amplitude modulation :DSB-AM

    Single sideband amplitude modulation :SSB_AM

    Residual sideband banner :VSB_AM

  4. Modulation signal expression transfer system Letter Number : U Ω ( t )   =    U Ω m cos ⁡ Ω t { Modulation signal :U_{\Omega}(t)\ = \ \ U_{\Omega m}\cos}{\Omega t} transfer system Letter Number UΩ(t) =  UΩmcosΩt

load wave Letter Number : U c ( t )     =    U cm c o s ( w c t ) carrier signal {:U}_{c}(t)\ \ \ = \ \ U_{\text{cm}}cos(w_{c}t) load wave Letter Number Uc(t)   =  Ucmcos(wct)

because AM The frequency of the modulation does not change , Adopt the frequency of carrier signal , The amplitude varies with the transmitted signal , therefore AM The expression of the modulated signal is :

has transfer Letter Number : U AM ( t )   =   U m ( t ) c o s ( w c t )   Modulated signal :U_{\text{AM}}(t)\ = \ U_{m}(t)cos(w_{c}t)\ has transfer Letter Number UAM(t) = Um(t)cos(wct) 

  = ( U cm + K a U Ω m cos ⁡ Ω t ) c o s ( w c t )   \ = (U_{\text{cm}}{+ K_{a}U}_{\Omega m}\cos\Omega t)cos(w_{c}t)\  =(Ucm+KaUΩmcosΩt)cos(wct) 

= U cm ( 1 + K a U Ω m U cm cos ⁡ Ω t ) c o s ( w c t )   = U_{\text{cm}}(1 + K_{a}\frac{U_{\Omega m}}{U_{\text{cm}}}\cos\Omega t)cos(w_{c}t)\ =Ucm(1+KaUcmUΩmcosΩt)cos(wct) 

among m a m_{a} ma Is the amplitude modulation coefficient : m a m_{a} ma= K a U Ω m U cm K_{a}\frac{U_{\Omega m}}{U_{\text{cm}}} KaUcmUΩm

Maximum amplitude of AM signal : U m U_{m} Um(max)=( U cm ( 1 + m a U_{\text{cm}}(1 + m_{a} Ucm(1+ma)

Minimum amplitude of AM signal : U m U_{m} Um(min)=( U cm ( 1 − m a U_{\text{cm}}(1 - m_{a} Ucm(1ma)

So when m a m_{a} ma>1 when , Over modulation will occur , That is, the minimum value of AM signal is negative .

 Insert picture description here

take U AM ( t )   = U_{\text{AM}}(t)\ = UAM(t) = U cm U_{\text{cm}} Ucm(1 + m a m_{\text{a}} macos Ω \Omega Ω t)cos( w c t ) w_{\text{c}}t) wct) Continue to expand to get :

U AM ( t ) = U cm c o s ( w c t ) + 1 2 ma U cm c o s ( w c + Ω ) t +   1 2 ma U cm c o s ( w c − Ω ) t U_{\text{AM}}(t) = U_{\text{cm}}cos(w_{c}t) + \frac{1}{2}\text{ma}U_{\text{cm}}cos(w_{c} + \Omega)t + \ \frac{1}{2}\text{ma}U_{\text{cm}}cos(w_{c} - \Omega)t UAM(t)=Ucmcos(wct)+21maUcmcos(wc+Ω)t+ 21maUcmcos(wcΩ)t

Therefore, it is known that the modulated wave contains three frequency components w c 、 w c + Ω ( On edge frequency ) w_{c}、w_{c} + \Omega( Upper sideband ) wcwc+Ω( On edge frequency ) w c − Ω w_{c} - \Omega wcΩ( Lower sideband )
 Insert picture description here

FM modulation ---- Frequency modulation

  1. Concept

    The amplitude of the carrier wave does not change , The instantaneous angular frequency changes linearly with the modulation signal .

  2. Advantages and disadvantages

    Strong anti-interference , But the transmission distance is short .

  3. Modulation signal expression

    transfer system Letter Number : U Ω ( t )   =    U Ω m cos ⁡ ( Ω t ) { Modulation signal :U_{\Omega}(t)\ = \ \ U_{\Omega m}\cos}{(\Omega t)} transfer system Letter Number UΩ(t) =  UΩmcos(Ωt)

load wave Letter Number : U c ( t )     =    U cm c o s ( w c t ) carrier signal {:U}_{c}(t)\ \ \ = \ \ U_{\text{cm}}cos(w_{c}t) load wave Letter Number Uc(t)   =  Ucmcos(wct)

FM The instantaneous angular frequency of the modulation is :

  w f ( t ) = w c + k f U Ω ( t )   =   w c + k f U Ω m cos ⁡ Ω t = w c + Δ w fm cos ⁡ Ω t   \ w_{f}(t) = w_{c} + k_{f}U_{\Omega}(t)\ = \ w_{c} + k_{f}{U_{\Omega m}\cos}{\Omega t} = w_{c} + \mathrm{\Delta}w_{\text{fm}}\cos{\Omega t}\  wf(t)=wc+kfUΩ(t) = wc+kfUΩmcosΩt=wc+ΔwfmcosΩt 

among , w c w_{c} wc Is the carrier angular frequency ;

k f k_{f} kf Is the frequency modulation sensitivity , Indicates the frequency change caused by unit modulation signal amplitude , Unit is rad/s.V perhaps hz/V;

Δ w fm \mathrm{\Delta}w_{\text{fm}} Δwfm Is the maximum angular frequency offset of FM wave , Express FM Amplitude of wave frequency oscillation ; Δ w fm \mathrm{\Delta}w_{\text{fm}} Δwfm= k f U Ω m k_{f}U_{\Omega m} kfUΩm

transfer frequency system Count   m f = Δ w fm Ω = k f U Ω m Ω = Δ f m F = Δ φ fm Frequency modulation coefficient \ m_{f} = \frac{\mathrm{\Delta}w_{\text{fm}}}{\Omega} = \frac{k_{f}U_{\Omega m}}{\Omega} = \frac{\mathrm{\Delta}f_{m}}{F} = \mathrm{\Delta}\varphi_{\text{fm}} transfer frequency system Count  mf=ΩΔwfm=ΩkfUΩm=FΔfm=Δφfm, Add the additional maximum phase offset to the phase of the carrier signal during time-frequency modulation , And   U Ω m \ U_{\Omega m}  UΩm In direct proportion to , And Ω \Omega Ω In inverse proportion .

Therefore, the signal has been adjusted

U fm ( t ) = U cm cos ⁡ ( w f ( t ) ∗ t ) = U cm cos ⁡ ( w c t + m f   s i n ( Ω t ) ) {U_{\text{fm}}(t) = U_{\text{cm}}\cos}{(w_{f}(t) \ast t)} = U_{\text{cm}}\cos(w_{c}t + m_{f}\ sin(\Omega t)) Ufm(t)=Ucmcos(wf(t)t)=Ucmcos(wct+mf sin(Ωt))

Converted to U fm ( t ) = U cm cos ⁡ ( w f ( t ) ∗ t ) = U cm cos ⁡ ( w c t + k f   ∫ 0 t U Ω ( t ) d t ) {U_{\text{fm}}(t) = U_{\text{cm}}\cos}{(w_{f}(t) \ast t)} = U_{\text{cm}}\cos(w_{c}t + k_{f}\ \int_{0}^{t}{U_{\Omega}(t)}dt) Ufm(t)=Ucmcos(wf(t)t)=Ucmcos(wct+kf 0tUΩ(t)dt)

Come to the conclusion , FM time , The instantaneous angular frequency changes linearly with the modulated signal , The change of instantaneous phase is linear with the integral of modulated signal . FM time , Frequency offset reflects the change law of modulated signal , The phase offset is proportional to the integral of the modulated signal .

 Insert picture description here

From the frequency modulation waveform , The waveform of FM wave is equal amplitude density wave , The density of the waveform reflects the magnitude of the instantaneous angular frequency of the FM wave , That is, the size of the modulated signal .

PM modulation — Phase modulation

  1. Concept

    The phase of the carrier varies linearly with the modulated signal .

  2. expression

transfer system Letter Number : U Ω ( t )   =    U Ω m cos ⁡ ( Ω t ) { Modulation signal :U_{\Omega}(t)\ = \ \ U_{\Omega m}\cos}{(\Omega t)} transfer system Letter Number UΩ(t) =  UΩmcos(Ωt)

load wave Letter Number : U c ( t )     =    U cm c o s ( w c t ) carrier signal {:U}_{c}(t)\ \ \ = \ \ U_{\text{cm}}cos(w_{c}t) load wave Letter Number Uc(t)   =  Ucmcos(wct)

Instantaneous phase of phase modulated signal :

φ ( t )   = w c t + k p U Ω ( t )   =   w c t + k p U Ω m cos ⁡ Ω t \varphi(t)\ = w_{c}t + k_{p}U_{\Omega}(t)\ = \ w_{c}t + k_{p}{U_{\Omega m}\cos}{\Omega t} φ(t) =wct+kpUΩ(t) = wct+kpUΩmcosΩt

The instantaneous angular frequency is :

w ( t ) = d φ ( t ) dt = w c + k p d U Ω ( t )   dt = w c + k p U Ω ( t )   w(t) = {\frac{d\varphi(t)}{\text{dt}} = w_{c} + k_{p}\frac{ {dU}_{\Omega}(t)\ }{\text{dt}} = w}_{c} + k_{p}U_{\Omega}(t)\ w(t)=dtdφ(t)=wc+kpdtdUΩ(t) =wc+kpUΩ(t) 

among , k p k_{p} kp Is the modulation coefficient .

The general expression of phase modulated wave can be calculated :

U p m ( t ) = U cm cos ⁡ ( φ ( t ) ) = U cm cos ⁡ ( w c t + k p U Ω ( t )   ) {U_{pm}(t) = U_{\text{cm}}\cos}{(\varphi(t))} = U_{\text{cm}}\cos(w_{c}t + k_{p}U_{\Omega}(t)\ ) Upm(t)=Ucmcos(φ(t))=Ucmcos(wct+kpUΩ(t) )

  1. The difference between frequency modulation and phase modulation

    Frequency modulation and phase modulation will cause the carrier to change in frequency and phase , But the law of their changes is different , Frequency modulation is that the angular frequency of the carrier varies with the modulated signal , Phase modulation means that the phase of the carrier wave changes with the modulation signal .

 Insert picture description here

原网站

版权声明
本文为[yindq1220]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/02/202202211319229668.html