当前位置:网站首页>Advanced Mathematics (Seventh Edition) Tongji University exercises 1-9 personal solutions
Advanced Mathematics (Seventh Edition) Tongji University exercises 1-9 personal solutions
2022-06-23 05:44:00 【Navigator_ Z】
Advanced mathematics ( The seventh edition ) Tongji University exercises 1-9
1. seek Letter Count f ( x ) = x 3 + 3 x 2 − x − 3 x 2 + x − 6 Of even To continue District between , and seek extremely limit lim x → 0 f ( x ) , lim x → − 3 f ( x ) And lim x → 2 f ( x ) \begin{aligned}&1. \ Seeking function f(x)=\frac{x^3+3x^2-x-3}{x^2+x-6} The continuous interval of , And find the limit \lim_{x \rightarrow 0}f(x),\lim_{x \rightarrow -3}f(x) And \lim_{x \rightarrow 2}f(x)&\end{aligned} 1. seek Letter Count f(x)=x2+x−6x3+3x2−x−3 Of even To continue District between , and seek extremely limit x→0limf(x),x→−3limf(x) And x→2limf(x)
Explain :
When x = − 3 , x = 2 when , f ( x ) nothing It means The righteous , the With this two individual spot by between break spot , except this And Outside , Letter Count all even To continue , even To continue District between by ( − ∞ , − 3 ) , ( − 3 , 2 ) , ( 2 , + ∞ ) f ( x ) = x 3 + 3 x 2 − x − 3 x 2 + x − 6 = ( x + 3 ) ( x 2 − 1 ) ( x + 3 ) ( x − 2 ) = x 2 − 1 x − 2 lim x → 0 f ( x ) = lim x → 0 x 2 − 1 x − 2 = 1 2 lim x → − 3 f ( x ) = lim x → − 3 x 2 − 1 x − 2 = − 8 5 lim x → 2 f ( x ) = lim x → 2 x 2 − 1 x − 2 , and lim x → 2 x − 2 x 2 − 1 = 0 , the With lim x → 2 f ( x ) = ∞ \begin{aligned} &\ \ When x=-3,x=2 when ,f(x) meaningless , So these two points are discontinuities , besides , Functions are continuous ,\\\\ &\ \ The continuous interval is (-\infty, \ -3),(-3, \ 2),(2, \ +\infty)\\\\ &\ \ f(x)=\frac{x^3+3x^2-x-3}{x^2+x-6}=\frac{(x+3)(x^2-1)}{(x+3)(x-2)}=\frac{x^2-1}{x-2}\\\\ &\ \ \lim_{x \rightarrow 0}f(x)=\lim_{x \rightarrow 0}\frac{x^2-1}{x-2}=\frac{1}{2}\\\\ &\ \ \lim_{x \rightarrow -3}f(x)=\lim_{x \rightarrow -3}\frac{x^2-1}{x-2}=-\frac{8}{5}\\\\ &\ \ \lim_{x \rightarrow 2}f(x)=\lim_{x \rightarrow 2}\frac{x^2-1}{x-2}, and \lim_{x \rightarrow 2}\frac{x-2}{x^2-1}=0, therefore \lim_{x \rightarrow 2}f(x)=\infty & \end{aligned} When x=−3,x=2 when ,f(x) nothing It means The righteous , the With this two individual spot by between break spot , except this And Outside , Letter Count all even To continue , even To continue District between by (−∞, −3),(−3, 2),(2, +∞) f(x)=x2+x−6x3+3x2−x−3=(x+3)(x−2)(x+3)(x2−1)=x−2x2−1 x→0limf(x)=x→0limx−2x2−1=21 x→−3limf(x)=x→−3limx−2x2−1=−58 x→2limf(x)=x→2limx−2x2−1, and x→2limx2−1x−2=0, the With x→2limf(x)=∞
2. set up Letter Count f ( x ) And g ( x ) stay spot x 0 even To continue , Prove bright Letter Count φ ( x ) = m a x { f ( x ) , g ( x ) } , ψ ( x ) = m i n { f ( x ) , g ( x ) } stay spot x 0 also even To continue . \begin{aligned}&2. \ Let's set the function f(x) And g(x) At point x_0 continuity , Proof function \varphi(x)=max\{f(x),g(x)\},\psi(x)=min\{f(x),g(x)\}\\\\&\ \ \ \ At point x_0 It's continuous .&\end{aligned} 2. set up Letter Count f(x) And g(x) stay spot x0 even To continue , Prove bright Letter Count φ(x)=max{ f(x),g(x)},ψ(x)=min{ f(x),g(x)} stay spot x0 also even To continue .
Explain :
φ ( x ) = m a x { f ( x ) , g ( x ) } = 1 2 [ f ( x ) + g ( x ) + ∣ f ( x ) − g ( x ) ∣ ] , ψ ( x ) = m i n { f ( x ) , g ( x ) } = 1 2 [ f ( x ) + g ( x ) − ∣ f ( x ) − g ( x ) ∣ ] . because f ( x ) stay spot x 0 even To continue , be ∣ f ( x ) ∣ stay spot x 0 also even To continue ; from On even To continue Letter Count Of and 、 Bad still even To continue , the With φ ( x ) 、 ψ ( x ) stay spot x 0 also even To continue \begin{aligned} &\ \ \varphi(x)=max\{f(x),g(x)\}=\frac{1}{2}[f(x)+g(x)+|f(x)-g(x)|],\\\\ &\ \ \psi(x)=min\{f(x),g(x)\}=\frac{1}{2}[f(x)+g(x)-|f(x)-g(x)|].\\\\ &\ \ because f(x) At point x_0 continuity , be |f(x)| At point x_0 It's continuous ; Because of the sum of continuous functions 、 Difference still continuous , therefore \varphi(x)、\psi(x) At point x_0 It's continuous & \end{aligned} φ(x)=max{ f(x),g(x)}=21[f(x)+g(x)+∣f(x)−g(x)∣], ψ(x)=min{ f(x),g(x)}=21[f(x)+g(x)−∣f(x)−g(x)∣]. because f(x) stay spot x0 even To continue , be ∣f(x)∣ stay spot x0 also even To continue ; from On even To continue Letter Count Of and 、 Bad still even To continue , the With φ(x)、ψ(x) stay spot x0 also even To continue
3. seek Next Column extremely limit : \begin{aligned}&3. \ Find the following limit :&\end{aligned} 3. seek Next Column extremely limit :
( 1 ) lim x → 0 x 2 − 2 x + 5 ; ( 2 ) lim α → π 4 ( s i n 2 α ) 3 ; ( 3 ) lim x → π 6 l n ( 2 c o s 2 x ) ; ( 4 ) lim x → 0 x + 1 − 1 x ; ( 5 ) lim x → 1 5 x − 4 − x x − 1 ; ( 6 ) lim x → α s i n x − s i n α x − α ; ( 7 ) lim x → + ∞ ( x 2 + x − x 2 − x ) ; ( 8 ) lim x → 0 ( 1 − 1 2 x 2 ) 2 3 − 1 x l n ( 1 + x ) \begin{aligned} &\ \ (1)\ \ \lim_{x \rightarrow 0}\sqrt{x^2-2x+5};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \lim_{\alpha \rightarrow \frac{\pi}{4}}(sin\ 2\alpha)^3;\\\\ &\ \ (3)\ \ \lim_{x \rightarrow \frac{\pi}{6}}ln(2cos\ 2x);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \lim_{x \rightarrow 0}\frac{\sqrt{x+1}-1}{x};\\\\ &\ \ (5)\ \ \lim_{x \rightarrow 1}\frac{\sqrt{5x-4}-\sqrt{x}}{x-1};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ \lim_{x \rightarrow \alpha}\frac{sin\ x-sin\ \alpha}{x-\alpha};\\\\ &\ \ (7)\ \ \lim_{x \rightarrow +\infty}(\sqrt{x^2+x}-\sqrt{x^2-x});\ \ \ \ \ \ \ \ \ \ \ (8)\ \ \lim_{x \rightarrow 0}\frac{\left(1-\frac{1}{2}x^2\right)^{\frac{2}{3}}-1}{x\ ln(1+x)} & \end{aligned} (1) x→0limx2−2x+5; (2) α→4πlim(sin 2α)3; (3) x→6πlimln(2cos 2x); (4) x→0limxx+1−1; (5) x→1limx−15x−4−x; (6) x→αlimx−αsin x−sin α; (7) x→+∞lim(x2+x−x2−x); (8) x→0limx ln(1+x)(1−21x2)32−1
Explain :
( 1 ) lim x → 0 x 2 − 2 x + 5 = lim x → 0 ( x 2 − 2 x + 5 ) = 5 ( 2 ) lim α → π 4 ( s i n 2 α ) 3 = ( lim α → π 4 s i n 2 α ) 3 = ( s i n π 2 ) 3 = 1 ( 3 ) lim x → π 6 l n ( 2 c o s 2 x ) = l n ( lim x → π 6 2 c o s 2 x ) = l n ( 2 c o s π 3 ) = l n 1 = 0 ( 4 ) lim x → 0 x + 1 − 1 x = lim x → 0 x + 1 − 1 ( x + 1 + 1 ) ( x + 1 − 1 ) = lim x → 0 1 x + 1 + 1 = 1 2 ( 5 ) lim x → 1 5 x − 4 − x x − 1 = lim x → 1 ( 5 x − 4 − x ) ( 5 x − 4 + x ) ( x − 1 ) ( 5 x − 4 + x ) = lim x → 1 ( − x 2 − 5 x + 4 ( x − 1 ) ( 5 x − 4 + x ) ) = lim x → 1 ( − x − 4 5 x − 4 + x ) = 3 2 ( 6 ) lim x → α s i n x − s i n α x − α = lim x → α 2 s i n x − α 2 c o s x + α 2 x − α = lim x → α s i n x − α 2 x − α 2 ⋅ lim x → α c o s x + α 2 = c o s α ( 7 ) lim x → + ∞ ( x 2 + x − x 2 − x ) = lim x → + ∞ 2 x x 2 + x + x 2 − x = lim x → + ∞ 2 1 + 1 x + 1 − 1 x = 1 ( 8 ) lim x → 0 ( 1 − 1 2 x 2 ) 2 3 − 1 x l n ( 1 + x ) = lim x → 0 2 3 ⋅ ( − 1 2 x 2 ) x ⋅ x = − 1 3 \begin{aligned} &\ \ (1)\ \lim_{x \rightarrow 0}\sqrt{x^2-2x+5}=\sqrt{\lim_{x \rightarrow 0}(x^2-2x+5)}=\sqrt{5}\\\\ &\ \ (2)\ \lim_{\alpha \rightarrow \frac{\pi}{4}}(sin\ 2\alpha)^3=\left(\lim_{\alpha \rightarrow \frac{\pi}{4}}sin\ 2\alpha\right)^3=\left(sin\ \frac{\pi}{2}\right)^3=1\\\\ &\ \ (3)\ \lim_{x \rightarrow \frac{\pi}{6}}ln(2cos\ 2x)=ln\left(\lim_{x \rightarrow \frac{\pi}{6}}2cos\ 2x\right)=ln\left(2cos\ \frac{\pi}{3}\right)=ln1=0\\\\ &\ \ (4)\ \lim_{x \rightarrow 0}\frac{\sqrt{x+1}-1}{x}=\lim_{x \rightarrow 0}\frac{\sqrt{x+1}-1}{(\sqrt{x+1}+1)(\sqrt{x+1}-1)}=\lim_{x \rightarrow 0}\frac{1}{\sqrt{x+1}+1}=\frac{1}{2}\\\\ &\ \ (5)\ \lim_{x \rightarrow 1}\frac{\sqrt{5x-4}-\sqrt{x}}{x-1}=\lim_{x \rightarrow 1}\frac{(\sqrt{5x-4}-\sqrt{x})(\sqrt{5x-4}+\sqrt{x})}{(x-1)(\sqrt{5x-4}+\sqrt{x})}=\lim_{x \rightarrow 1}\left(-\frac{x^2-5x+4}{(x-1)(\sqrt{5x-4}+\sqrt{x})}\right)=\\\\ &\ \ \ \ \ \ \ \ \lim_{x \rightarrow 1}\left(-\frac{x-4}{\sqrt{5x-4}+\sqrt{x}}\right)=\frac{3}{2}\\\\ &\ \ (6)\ \lim_{x \rightarrow \alpha}\frac{sin\ x-sin\ \alpha}{x-\alpha}=\lim_{x \rightarrow \alpha}\frac{2sin\ \frac{x-\alpha}{2}cos\ \frac{x+\alpha}{2}}{x-\alpha}=\lim_{x \rightarrow \alpha}\frac{sin\ \frac{x-\alpha}{2}}{\frac{x-\alpha}{2}}\cdot \lim_{x \rightarrow \alpha}cos\ \frac{x+\alpha}{2}=cos\ \alpha\\\\ &\ \ (7)\ \lim_{x \rightarrow +\infty}(\sqrt{x^2+x}-\sqrt{x^2-x})=\lim_{x \rightarrow +\infty}\frac{2x}{\sqrt{x^2+x}+\sqrt{x^2-x}}=\lim_{x \rightarrow +\infty}\frac{2}{\sqrt{1+\frac{1}{x}}+\sqrt{1-\frac{1}{x}}}=1\\\\ &\ \ (8)\ \lim_{x \rightarrow 0}\frac{\left(1-\frac{1}{2}x^2\right)^{\frac{2}{3}}-1}{x\ ln(1+x)}=\lim_{x \rightarrow 0}\frac{\frac{2}{3}\cdot \left(-\frac{1}{2}x^2\right)}{x\cdot x}=-\frac{1}{3} & \end{aligned} (1) x→0limx2−2x+5=x→0lim(x2−2x+5)=5 (2) α→4πlim(sin 2α)3=(α→4πlimsin 2α)3=(sin 2π)3=1 (3) x→6πlimln(2cos 2x)=ln(x→6πlim2cos 2x)=ln(2cos 3π)=ln1=0 (4) x→0limxx+1−1=x→0lim(x+1+1)(x+1−1)x+1−1=x→0limx+1+11=21 (5) x→1limx−15x−4−x=x→1lim(x−1)(5x−4+x)(5x−4−x)(5x−4+x)=x→1lim(−(x−1)(5x−4+x)x2−5x+4)= x→1lim(−5x−4+xx−4)=23 (6) x→αlimx−αsin x−sin α=x→αlimx−α2sin 2x−αcos 2x+α=x→αlim2x−αsin 2x−α⋅x→αlimcos 2x+α=cos α (7) x→+∞lim(x2+x−x2−x)=x→+∞limx2+x+x2−x2x=x→+∞lim1+x1+1−x12=1 (8) x→0limx ln(1+x)(1−21x2)32−1=x→0limx⋅x32⋅(−21x2)=−31
4. seek Next Column extremely limit : \begin{aligned}&4. \ Find the following limit :&\end{aligned} 4. seek Next Column extremely limit :
( 1 ) lim x → ∞ e 1 x ; ( 2 ) lim x → 0 l n s i n x x ; ( 3 ) lim x → ∞ ( 1 + 1 x ) x 2 ; ( 4 ) lim x → 0 ( 1 + 3 t a n 2 x ) c o t 2 x ; ( 5 ) lim x → ∞ ( 3 + x 6 + x ) x − 1 2 ; ( 6 ) lim x → 0 1 + t a n x − 1 + s i n x x 1 + s i n 2 x − x ; ( 7 ) lim x → e l n x − 1 x − e ; ( 8 ) lim x → 0 e 3 x − e 2 x − e x + 1 ( 1 − x ) ( 1 + x ) 3 − 1 \begin{aligned} &\ \ (1)\ \ \lim_{x \rightarrow \infty}e^{\frac{1}{x}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \lim_{x \rightarrow 0}ln\frac{sin\ x}{x};\\\\ &\ \ (3)\ \ \lim_{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{\frac{x}{2}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \lim_{x \rightarrow 0}(1+3tan^2\ x)^{cot^2\ x};\\\\ &\ \ (5)\ \ \lim_{x \rightarrow \infty}\left(\frac{3+x}{6+x}\right)^{\frac{x-1}{2}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ \lim_{x \rightarrow 0}\frac{\sqrt{1+tan\ x}-\sqrt{1+sin\ x}}{x\sqrt{1+sin^2\ x}-x};\\\\ &\ \ (7)\ \ \lim_{x \rightarrow e}\frac{ln\ x-1}{x-e};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (8)\ \ \lim_{x \rightarrow 0}\frac{e^{3x}-e^{2x}-e^x+1}{\sqrt[3]{(1-x)(1+x)}-1} & \end{aligned} (1) x→∞limex1; (2) x→0limlnxsin x; (3) x→∞lim(1+x1)2x; (4) x→0lim(1+3tan2 x)cot2 x; (5) x→∞lim(6+x3+x)2x−1; (6) x→0limx1+sin2 x−x1+tan x−1+sin x; (7) x→elimx−eln x−1; (8) x→0lim3(1−x)(1+x)−1e3x−e2x−ex+1
Explain :
( 1 ) lim x → ∞ e 1 x = e lim x → ∞ 1 x = e 0 = 1 ( 2 ) lim x → 0 l n s i n x x = l n ( lim x → 0 s i n x x ) = l n 1 = 0 ( 3 ) lim x → ∞ ( 1 + 1 x ) x 2 = lim x → ∞ [ ( 1 + 1 x ) x ] 1 2 = e 1 2 = e ( 4 ) lim x → 0 ( 1 + 3 t a n 2 x ) c o t 2 x = lim x → 0 [ ( 1 + 3 t a n 2 x ) 1 3 c o t 2 x ] 3 = e 3 ( 5 ) lim x → ∞ ( 3 + x 6 + x ) x − 1 2 = lim x → ∞ [ ( 1 − 3 6 + x ) − 6 + x 3 ] − 3 2 ⋅ lim x → ∞ ( 1 − 3 6 + x ) − 7 2 = e − 3 2 ( 6 ) lim x → 0 1 + t a n x − 1 + s i n x x 1 + s i n 2 x − x = lim x → 0 t a n x − s i n x x ( 1 + s i n 2 x − 1 ) ( 1 + t a n x + 1 + s i n x ) = lim x → 0 ( s i n x x ⋅ s e c x − 1 1 + s i n 2 x − 1 ⋅ 1 1 + t a n x + 1 + s i n x ) = lim x → 0 s i n x x ⋅ lim x → 0 1 2 x 2 1 2 s i n 2 x ⋅ lim x → 0 1 1 + t a n x + 1 + s i n x = 1 2 ( 7 ) Make t = x − e , be x = t + e , When x → e when , t → 0 , lim x → e l n x − 1 x − e = lim t → 0 l n ( t + e ) − l n e t = lim t → 0 l n ( 1 + t e ) t = 1 e ( 8 ) lim x → 0 e 3 x − e 2 x − e x + 1 ( 1 − x ) ( 1 + x ) 3 − 1 = lim x → 0 ( e 2 x − 1 ) ( e x − 1 ) ( 1 − x 2 ) 1 3 − 1 = lim x → 0 2 x ⋅ x − 1 3 x 2 = − 6 \begin{aligned} &\ \ (1)\ \lim_{x \rightarrow \infty}e^{\frac{1}{x}}=e^{ {\displaystyle \lim_{x \rightarrow \infty}\frac{1}{x}}}=e^0=1\\\\ &\ \ (2)\ \lim_{x \rightarrow 0}ln\frac{sin\ x}{x}=ln\left(\lim_{x \rightarrow 0}\frac{sin\ x}{x}\right)=ln1=0\\\\ &\ \ (3)\ \lim_{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{\frac{x}{2}}=\lim_{x \rightarrow \infty}\left[\left(1+\frac{1}{x}\right)^x\right]^{\frac{1}{2}}=e^{\frac{1}{2}}=\sqrt{e}\\\\ &\ \ (4)\ \lim_{x \rightarrow 0}(1+3tan^2\ x)^{cot^2\ x}=\lim_{x \rightarrow 0}[(1+3tan^2\ x)^{\frac{1}{3}cot^2\ x}]^3=e^3\\\\ &\ \ (5)\ \lim_{x \rightarrow \infty}\left(\frac{3+x}{6+x}\right)^{\frac{x-1}{2}}=\lim_ {x \rightarrow \infty}\left[\left(1-\frac{3}{6+x}\right)^{-\frac{6+x}{3}}\right]^{-\frac{3}{2}}\cdot \lim_{x \rightarrow \infty}\left(1-\frac{3}{6+x}\right)^{-\frac{7}{2}}=e^{-\frac{3}{2}}\\\\ &\ \ (6)\ \lim_{x \rightarrow 0}\frac{\sqrt{1+tan\ x}-\sqrt{1+sin\ x}}{x\sqrt{1+sin^2\ x}-x}=\lim_{x \rightarrow 0}\frac{tan\ x-sin\ x}{x(\sqrt{1+sin^2\ x}-1)(\sqrt{1+tan\ x}+\sqrt{1+sin\ x})}=\\\\ &\ \ \ \ \ \ \ \ \lim_{x \rightarrow 0}\left(\frac{sin\ x}{x}\cdot \frac{sec\ x-1}{\sqrt{1+sin^2\ x}-1}\cdot \frac{1}{\sqrt{1+tan\ x}+\sqrt{1+sin\ x}}\right)=\\\\ &\ \ \ \ \ \ \ \ \lim_{x \rightarrow 0}\frac{sin\ x}{x}\cdot \lim_{x \rightarrow 0}\frac{\frac{1}{2}x^2}{\frac{1}{2}sin^2\ x}\cdot \lim_{x \rightarrow 0}\frac{1}{\sqrt{1+tan\ x}+\sqrt{1+sin\ x}}=\frac{1}{2}\\\\ &\ \ (7)\ Make t=x-e, be x=t+e, When x \rightarrow e when ,t \rightarrow 0,\lim_{x \rightarrow e}\frac{ln\ x-1}{x-e}=\lim_{t \rightarrow 0}\frac{ln(t+e)-ln\ e}{t}=\lim_{t \rightarrow 0}\frac{ln\left(1+\frac{t}{e}\right)}{t}=\frac{1}{e}\\\\ &\ \ (8)\ \lim_{x \rightarrow 0}\frac{e^{3x}-e^{2x}-e^x+1}{\sqrt[3]{(1-x)(1+x)}-1}=\lim_{x \rightarrow 0}\frac{(e^{2x}-1)(e^x-1)}{(1-x^2)^{\frac{1}{3}}-1}=\lim_{x \rightarrow 0}\frac{2x\cdot x}{-\frac{1}{3}x^2}=-6 & \end{aligned} (1) x→∞limex1=ex→∞limx1=e0=1 (2) x→0limlnxsin x=ln(x→0limxsin x)=ln1=0 (3) x→∞lim(1+x1)2x=x→∞lim[(1+x1)x]21=e21=e (4) x→0lim(1+3tan2 x)cot2 x=x→0lim[(1+3tan2 x)31cot2 x]3=e3 (5) x→∞lim(6+x3+x)2x−1=x→∞lim[(1−6+x3)−36+x]−23⋅x→∞lim(1−6+x3)−27=e−23 (6) x→0limx1+sin2 x−x1+tan x−1+sin x=x→0limx(1+sin2 x−1)(1+tan x+1+sin x)tan x−sin x= x→0lim(xsin x⋅1+sin2 x−1sec x−1⋅1+tan x+1+sin x1)= x→0limxsin x⋅x→0lim21sin2 x21x2⋅x→0lim1+tan x+1+sin x1=21 (7) Make t=x−e, be x=t+e, When x→e when ,t→0,x→elimx−eln x−1=t→0limtln(t+e)−ln e=t→0limtln(1+et)=e1 (8) x→0lim3(1−x)(1+x)−1e3x−e2x−ex+1=x→0lim(1−x2)31−1(e2x−1)(ex−1)=x→0lim−31x22x⋅x=−6
5. set up f ( x ) stay R On even To continue , And f ( x ) ≠ 0 , φ ( x ) stay R On Yes set The righteous , And from between break spot , be Next Column Chen Statement in which some yes Yes Of , which some yes wrong Of ? Such as fruit yes Yes Of , try say bright The reason is from ; Such as fruit yes wrong Of , try to Out want to back example . \begin{aligned}&5. \ set up f(x) stay R Continuous on , And f(x) \neq 0,\varphi(x) stay R There's a definition on , And by the discontinuity , Which of the following statements is true ,\\\\&\ \ \ \ \ What's wrong ? If it's right , Try to explain why ; If it's wrong , Try to give a counterexample .&\end{aligned} 5. set up f(x) stay R On even To continue , And f(x)=0,φ(x) stay R On Yes set The righteous , And from between break spot , be Next Column Chen Statement in which some yes Yes Of , which some yes wrong Of ? Such as fruit yes Yes Of , try say bright The reason is from ; Such as fruit yes wrong Of , try to Out want to back example .
( 1 ) φ [ f ( x ) ] have to Yes between break spot ; ( 2 ) [ φ ( x ) ] 2 have to Yes between break spot ; ( 3 ) f [ φ ( x ) ] not have to Yes between break spot ; ( 4 ) φ ( x ) f ( x ) have to Yes between break spot \begin{aligned} &\ \ (1)\ \ \varphi[f(x)] There must be a break point ;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ [\varphi(x)]^2 There must be a break point ;\\\\ &\ \ (3)\ \ f[\varphi(x)] There may not be a discontinuity ;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \frac{\varphi(x)}{f(x)} There must be a break point & \end{aligned} (1) φ[f(x)] have to Yes between break spot ; (2) [φ(x)]2 have to Yes between break spot ; (3) f[φ(x)] not have to Yes between break spot ; (4) f(x)φ(x) have to Yes between break spot
Explain :
( 1 ) wrong Of , φ ( x ) = s g n x , f ( x ) = e x , φ [ f ( x ) ] ≡ 1 stay R On even To continue ( 2 ) wrong Of , φ ( x ) = { 1 , x ∈ Q , − 1 , x ∈ R \ Q , [ φ ( x ) ] 2 ≡ 1 stay R On even To continue ( 3 ) Yes Of , φ ( x ) = { 1 , x ∈ Q , − 1 , x ∈ R \ Q , f ( x ) = ∣ x ∣ + 1 , f [ φ ( x ) ] ≡ 2 stay R On even To continue ( 4 ) Yes Of , Such as fruit F ( x ) = φ ( x ) f ( x ) stay R On even To continue , be φ ( x ) = F ( x ) ⋅ f ( x ) also stay R On even To continue , And has know Spear shield \begin{aligned} &\ \ (1)\ In the wrong ,\varphi(x)=sgn\ x,f(x)=e^x,\varphi[f(x)] \equiv 1 stay R Continuous on \\\\ &\ \ (2)\ In the wrong ,\varphi(x)=\begin{cases}1,\ \ \ x \in Q,\\\\-1,x \in R\verb|\|Q,\end{cases}[\varphi(x)]^2 \equiv 1 stay R Continuous on \\\\ &\ \ (3)\ Right ,\varphi(x)=\begin{cases}1,\ \ \ x \in Q,\\\\-1,x \in R\verb|\|Q,\end{cases}f(x)=|x|+1,f[\varphi(x)] \equiv 2 stay R Continuous on \\\\ &\ \ (4)\ Right , If F(x)=\frac{\varphi(x)}{f(x)} stay R Continuous on , be \varphi(x)=F(x)\cdot f(x) Also in the R Continuous on , Conflict with known & \end{aligned} (1) wrong Of ,φ(x)=sgn x,f(x)=ex,φ[f(x)]≡1 stay R On even To continue (2) wrong Of ,φ(x)=⎩⎪⎨⎪⎧1, x∈Q,−1,x∈R\Q,[φ(x)]2≡1 stay R On even To continue (3) Yes Of ,φ(x)=⎩⎪⎨⎪⎧1, x∈Q,−1,x∈R\Q,f(x)=∣x∣+1,f[φ(x)]≡2 stay R On even To continue (4) Yes Of , Such as fruit F(x)=f(x)φ(x) stay R On even To continue , be φ(x)=F(x)⋅f(x) also stay R On even To continue , And has know Spear shield
6. set up Letter Count f ( x ) = { e x , x < 0 , α + x , x ≥ 0 Should be When how sample choose Choose Count α , only can send have to f ( x ) become by stay ( − ∞ , + ∞ ) Inside Of even To continue Letter Count . \begin{aligned}&6. \ Let's set the function f(x)=\begin{cases}e^x,\ \ \ \ \ x \lt 0,\\\\\alpha+x,x \ge 0\end{cases} How to choose numbers \alpha, Can make f(x) Be in (-\infty,\ +\infty) Continuous functions in .&\end{aligned} 6. set up Letter Count f(x)=⎩⎪⎨⎪⎧ex, x<0,α+x,x≥0 Should be When how sample choose Choose Count α, only can send have to f(x) become by stay (−∞, +∞) Inside Of even To continue Letter Count .
Explain :
from On first etc. Letter Count Of even To continue sex , f ( x ) stay ( − ∞ , 0 ) and ( 0 , + ∞ ) Inside even To continue , the With want send f ( x ) stay ( − ∞ , + ∞ ) Inside even To continue , only want choose Choose Count α , send f ( x ) stay x = 0 It's about even To continue namely can . stay x = 0 It's about , lim x → 0 − f ( x ) = lim x → 0 − e x = 1 , lim x → 0 + f ( x ) = lim x → 0 + ( α + x ) = α , f ( 0 ) = α , take α = 1 , be lim x → 0 − f ( x ) = lim x → 0 + f ( x ) = f ( 0 ) = 1 , the With take α = 1 , f ( x ) Just become by stay ( − ∞ , + ∞ ) Inside Of even To continue Letter Count \begin{aligned} &\ \ Because of the continuity of elementary functions ,f(x) stay (-\infty,0) and (0,+\infty) Internal continuity , So we should make f(x) stay (-\infty,+\infty) Internal continuity ,\\\\ &\ \ Just choose the number \alpha, send f(x) stay x=0 It can be continuous .\\\\ &\ \ stay x=0 It's about ,\lim_{x \rightarrow 0^-}f(x)=\lim_{x \rightarrow 0^-}e^x=1,\lim_{x \rightarrow 0^+}f(x)=\lim_{x \rightarrow 0^+}(\alpha+x)=\alpha,f(0)=\alpha,\\\\ &\ \ take \alpha=1, be \lim_{x \rightarrow 0^-}f(x)=\lim_{x \rightarrow 0^+}f(x)=f(0)=1, So take \alpha=1,f(x) Become in (-\infty,+\infty) Continuous functions in & \end{aligned} from On first etc. Letter Count Of even To continue sex ,f(x) stay (−∞,0) and (0,+∞) Inside even To continue , the With want send f(x) stay (−∞,+∞) Inside even To continue , only want choose Choose Count α, send f(x) stay x=0 It's about even To continue namely can . stay x=0 It's about ,x→0−limf(x)=x→0−limex=1,x→0+limf(x)=x→0+lim(α+x)=α,f(0)=α, take α=1, be x→0−limf(x)=x→0+limf(x)=f(0)=1, the With take α=1,f(x) Just become by stay (−∞,+∞) Inside Of even To continue Letter Count
边栏推荐
- GDB data reading in GDAL (III) of GIS
- Is there a real part-time job online? How do college students find part-time jobs in summer?
- MySQL Foundation
- Differences between fs4059a and fs5080e charging chips
- 知识点滴 - 折叠锻打和大马士革钢
- Today's sleep quality record 80 points
- About replay attack and defense
- True question of MySQL interview (29) -- case - finding favorite movies
- 低成本5W无线充电器方案FS68001B简便充电芯片
- Markdown add background color to the picture
猜你喜欢

Build a gocd environment

数字藏品市场才刚刚开始

MySQL面试真题(二十五)——常见的分组比较场景

数字藏品赋能实体产业释放了哪些利好?

软件设计开发笔记2:基于QT设计串口调试工具

MySQL面试真题(二十九)——案例-找到爱看的电影

Introduction to JDBC (III) implementation of transaction rollback function

Current situation and development of containerization technology under the cloud native trend

Xa mode explanation and code implementation of four Seata modes

How to move the software downloaded from win11 app store to the desktop
随机推荐
Build a gocd environment
MySQL面试真题(二十三)——拼多多-球赛分析
2022年中国重卡智能化升级专题研究
Jvm: when a method is overloaded, the specific method to call is determined by the static type of the incoming parameter rather than the actual type of the parameter
Today's sleep quality record 80 points
About information disclosure and defense
Win11应用商店下载的软件怎么移到桌面
Heimdall Database Proxy横向扩展提高20倍
Database connection exception: create connection error, url: jdbc: mysql://ip/ Database name, errorcode 0, state 08s01 problem handling
[graduation season u; advanced technology Er] farewell to the confused self in the past two years. Regroup, junior I'm coming
抽奖 ddd 代码
知识点滴 - 折叠锻打和大马士革钢
啊哈C语言 第7章 有了它你能做更多的事(第27-28讲)
IP6809三线圈15W无线充电发射端方案ic英集芯
read 文件一个字节实际会发生多大的磁盘IO?
AHA C language Chapter 7 you can do more with it (talks 27-28)
Meteorological mapping software panoply tutorial (updated from time to time)
啊哈C语言 第8章 游戏时间到了(第29讲)
MySQL面试真题(二十九)——案例-找到爱看的电影
[proteus simulation] Arduino uno+pcf8574+lcd1602+mpx4250 electronic scale