当前位置:网站首页>Advanced Mathematics (Seventh Edition) Tongji University exercises 1-9 personal solutions

Advanced Mathematics (Seventh Edition) Tongji University exercises 1-9 personal solutions

2022-06-23 05:44:00 Navigator_ Z

Advanced mathematics ( The seventh edition ) Tongji University exercises 1-9

 

1.   seek Letter Count f ( x ) = x 3 + 3 x 2 − x − 3 x 2 + x − 6 Of even To continue District between , and seek extremely limit lim ⁡ x → 0 f ( x ) , lim ⁡ x → − 3 f ( x ) And lim ⁡ x → 2 f ( x ) \begin{aligned}&1. \ Seeking function f(x)=\frac{x^3+3x^2-x-3}{x^2+x-6} The continuous interval of , And find the limit \lim_{x \rightarrow 0}f(x),\lim_{x \rightarrow -3}f(x) And \lim_{x \rightarrow 2}f(x)&\end{aligned} 1.  seek Letter Count f(x)=x2+x6x3+3x2x3 Of even To continue District between , and seek extremely limit x0limf(x),x3limf(x) And x2limf(x)

Explain :

   When x = − 3 , x = 2 when , f ( x ) nothing It means The righteous , the With this two individual spot by between break spot , except this And Outside , Letter Count all even To continue ,    even To continue District between by ( − ∞ ,   − 3 ) , ( − 3 ,   2 ) , ( 2 ,   + ∞ )    f ( x ) = x 3 + 3 x 2 − x − 3 x 2 + x − 6 = ( x + 3 ) ( x 2 − 1 ) ( x + 3 ) ( x − 2 ) = x 2 − 1 x − 2    lim ⁡ x → 0 f ( x ) = lim ⁡ x → 0 x 2 − 1 x − 2 = 1 2    lim ⁡ x → − 3 f ( x ) = lim ⁡ x → − 3 x 2 − 1 x − 2 = − 8 5    lim ⁡ x → 2 f ( x ) = lim ⁡ x → 2 x 2 − 1 x − 2 , and lim ⁡ x → 2 x − 2 x 2 − 1 = 0 , the With lim ⁡ x → 2 f ( x ) = ∞ \begin{aligned} &\ \ When x=-3,x=2 when ,f(x) meaningless , So these two points are discontinuities , besides , Functions are continuous ,\\\\ &\ \ The continuous interval is (-\infty, \ -3),(-3, \ 2),(2, \ +\infty)\\\\ &\ \ f(x)=\frac{x^3+3x^2-x-3}{x^2+x-6}=\frac{(x+3)(x^2-1)}{(x+3)(x-2)}=\frac{x^2-1}{x-2}\\\\ &\ \ \lim_{x \rightarrow 0}f(x)=\lim_{x \rightarrow 0}\frac{x^2-1}{x-2}=\frac{1}{2}\\\\ &\ \ \lim_{x \rightarrow -3}f(x)=\lim_{x \rightarrow -3}\frac{x^2-1}{x-2}=-\frac{8}{5}\\\\ &\ \ \lim_{x \rightarrow 2}f(x)=\lim_{x \rightarrow 2}\frac{x^2-1}{x-2}, and \lim_{x \rightarrow 2}\frac{x-2}{x^2-1}=0, therefore \lim_{x \rightarrow 2}f(x)=\infty & \end{aligned}    When x=3,x=2 when ,f(x) nothing It means The righteous , the With this two individual spot by between break spot , except this And Outside , Letter Count all even To continue ,   even To continue District between by (, 3),(3, 2),(2, +)  f(x)=x2+x6x3+3x2x3=(x+3)(x2)(x+3)(x21)=x2x21  x0limf(x)=x0limx2x21=21  x3limf(x)=x3limx2x21=58  x2limf(x)=x2limx2x21, and x2limx21x2=0, the With x2limf(x)=


2.   set up Letter Count f ( x ) And g ( x ) stay spot x 0 even To continue , Prove bright Letter Count φ ( x ) = m a x { f ( x ) , g ( x ) } , ψ ( x ) = m i n { f ( x ) , g ( x ) }      stay spot x 0 also even To continue . \begin{aligned}&2. \ Let's set the function f(x) And g(x) At point x_0 continuity , Proof function \varphi(x)=max\{f(x),g(x)\},\psi(x)=min\{f(x),g(x)\}\\\\&\ \ \ \ At point x_0 It's continuous .&\end{aligned} 2.  set up Letter Count f(x) And g(x) stay spot x0 even To continue , Prove bright Letter Count φ(x)=max{ f(x),g(x)},ψ(x)=min{ f(x),g(x)}     stay spot x0 also even To continue .

Explain :

   φ ( x ) = m a x { f ( x ) , g ( x ) } = 1 2 [ f ( x ) + g ( x ) + ∣ f ( x ) − g ( x ) ∣ ] ,    ψ ( x ) = m i n { f ( x ) , g ( x ) } = 1 2 [ f ( x ) + g ( x ) − ∣ f ( x ) − g ( x ) ∣ ] .    because f ( x ) stay spot x 0 even To continue , be ∣ f ( x ) ∣ stay spot x 0 also even To continue ; from On even To continue Letter Count Of and 、 Bad still even To continue , the With φ ( x ) 、 ψ ( x ) stay spot x 0 also even To continue \begin{aligned} &\ \ \varphi(x)=max\{f(x),g(x)\}=\frac{1}{2}[f(x)+g(x)+|f(x)-g(x)|],\\\\ &\ \ \psi(x)=min\{f(x),g(x)\}=\frac{1}{2}[f(x)+g(x)-|f(x)-g(x)|].\\\\ &\ \ because f(x) At point x_0 continuity , be |f(x)| At point x_0 It's continuous ; Because of the sum of continuous functions 、 Difference still continuous , therefore \varphi(x)、\psi(x) At point x_0 It's continuous & \end{aligned}   φ(x)=max{ f(x),g(x)}=21[f(x)+g(x)+f(x)g(x)],  ψ(x)=min{ f(x),g(x)}=21[f(x)+g(x)f(x)g(x)].   because f(x) stay spot x0 even To continue , be f(x) stay spot x0 also even To continue ; from On even To continue Letter Count Of and Bad still even To continue , the With φ(x)ψ(x) stay spot x0 also even To continue


3.   seek Next Column extremely limit : \begin{aligned}&3. \ Find the following limit :&\end{aligned} 3.  seek Next Column extremely limit

   ( 1 )    lim ⁡ x → 0 x 2 − 2 x + 5 ;                              ( 2 )    lim ⁡ α → π 4 ( s i n   2 α ) 3 ;    ( 3 )    lim ⁡ x → π 6 l n ( 2 c o s   2 x ) ;                                 ( 4 )    lim ⁡ x → 0 x + 1 − 1 x ;    ( 5 )    lim ⁡ x → 1 5 x − 4 − x x − 1 ;                            ( 6 )    lim ⁡ x → α s i n   x − s i n   α x − α ;    ( 7 )    lim ⁡ x → + ∞ ( x 2 + x − x 2 − x ) ;             ( 8 )    lim ⁡ x → 0 ( 1 − 1 2 x 2 ) 2 3 − 1 x   l n ( 1 + x ) \begin{aligned} &\ \ (1)\ \ \lim_{x \rightarrow 0}\sqrt{x^2-2x+5};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \lim_{\alpha \rightarrow \frac{\pi}{4}}(sin\ 2\alpha)^3;\\\\ &\ \ (3)\ \ \lim_{x \rightarrow \frac{\pi}{6}}ln(2cos\ 2x);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \lim_{x \rightarrow 0}\frac{\sqrt{x+1}-1}{x};\\\\ &\ \ (5)\ \ \lim_{x \rightarrow 1}\frac{\sqrt{5x-4}-\sqrt{x}}{x-1};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ \lim_{x \rightarrow \alpha}\frac{sin\ x-sin\ \alpha}{x-\alpha};\\\\ &\ \ (7)\ \ \lim_{x \rightarrow +\infty}(\sqrt{x^2+x}-\sqrt{x^2-x});\ \ \ \ \ \ \ \ \ \ \ (8)\ \ \lim_{x \rightarrow 0}\frac{\left(1-\frac{1}{2}x^2\right)^{\frac{2}{3}}-1}{x\ ln(1+x)} & \end{aligned}   (1)  x0limx22x+5;                            (2)  α4πlim(sin 2α)3;  (3)  x6πlimln(2cos 2x);                               (4)  x0limxx+11;  (5)  x1limx15x4x;                          (6)  xαlimxαsin xsin α;  (7)  x+lim(x2+xx2x);           (8)  x0limx ln(1+x)(121x2)321

Explain :

   ( 1 )   lim ⁡ x → 0 x 2 − 2 x + 5 = lim ⁡ x → 0 ( x 2 − 2 x + 5 ) = 5    ( 2 )   lim ⁡ α → π 4 ( s i n   2 α ) 3 = ( lim ⁡ α → π 4 s i n   2 α ) 3 = ( s i n   π 2 ) 3 = 1    ( 3 )   lim ⁡ x → π 6 l n ( 2 c o s   2 x ) = l n ( lim ⁡ x → π 6 2 c o s   2 x ) = l n ( 2 c o s   π 3 ) = l n 1 = 0    ( 4 )   lim ⁡ x → 0 x + 1 − 1 x = lim ⁡ x → 0 x + 1 − 1 ( x + 1 + 1 ) ( x + 1 − 1 ) = lim ⁡ x → 0 1 x + 1 + 1 = 1 2    ( 5 )   lim ⁡ x → 1 5 x − 4 − x x − 1 = lim ⁡ x → 1 ( 5 x − 4 − x ) ( 5 x − 4 + x ) ( x − 1 ) ( 5 x − 4 + x ) = lim ⁡ x → 1 ( − x 2 − 5 x + 4 ( x − 1 ) ( 5 x − 4 + x ) ) =          lim ⁡ x → 1 ( − x − 4 5 x − 4 + x ) = 3 2    ( 6 )   lim ⁡ x → α s i n   x − s i n   α x − α = lim ⁡ x → α 2 s i n   x − α 2 c o s   x + α 2 x − α = lim ⁡ x → α s i n   x − α 2 x − α 2 ⋅ lim ⁡ x → α c o s   x + α 2 = c o s   α    ( 7 )   lim ⁡ x → + ∞ ( x 2 + x − x 2 − x ) = lim ⁡ x → + ∞ 2 x x 2 + x + x 2 − x = lim ⁡ x → + ∞ 2 1 + 1 x + 1 − 1 x = 1    ( 8 )   lim ⁡ x → 0 ( 1 − 1 2 x 2 ) 2 3 − 1 x   l n ( 1 + x ) = lim ⁡ x → 0 2 3 ⋅ ( − 1 2 x 2 ) x ⋅ x = − 1 3 \begin{aligned} &\ \ (1)\ \lim_{x \rightarrow 0}\sqrt{x^2-2x+5}=\sqrt{\lim_{x \rightarrow 0}(x^2-2x+5)}=\sqrt{5}\\\\ &\ \ (2)\ \lim_{\alpha \rightarrow \frac{\pi}{4}}(sin\ 2\alpha)^3=\left(\lim_{\alpha \rightarrow \frac{\pi}{4}}sin\ 2\alpha\right)^3=\left(sin\ \frac{\pi}{2}\right)^3=1\\\\ &\ \ (3)\ \lim_{x \rightarrow \frac{\pi}{6}}ln(2cos\ 2x)=ln\left(\lim_{x \rightarrow \frac{\pi}{6}}2cos\ 2x\right)=ln\left(2cos\ \frac{\pi}{3}\right)=ln1=0\\\\ &\ \ (4)\ \lim_{x \rightarrow 0}\frac{\sqrt{x+1}-1}{x}=\lim_{x \rightarrow 0}\frac{\sqrt{x+1}-1}{(\sqrt{x+1}+1)(\sqrt{x+1}-1)}=\lim_{x \rightarrow 0}\frac{1}{\sqrt{x+1}+1}=\frac{1}{2}\\\\ &\ \ (5)\ \lim_{x \rightarrow 1}\frac{\sqrt{5x-4}-\sqrt{x}}{x-1}=\lim_{x \rightarrow 1}\frac{(\sqrt{5x-4}-\sqrt{x})(\sqrt{5x-4}+\sqrt{x})}{(x-1)(\sqrt{5x-4}+\sqrt{x})}=\lim_{x \rightarrow 1}\left(-\frac{x^2-5x+4}{(x-1)(\sqrt{5x-4}+\sqrt{x})}\right)=\\\\ &\ \ \ \ \ \ \ \ \lim_{x \rightarrow 1}\left(-\frac{x-4}{\sqrt{5x-4}+\sqrt{x}}\right)=\frac{3}{2}\\\\ &\ \ (6)\ \lim_{x \rightarrow \alpha}\frac{sin\ x-sin\ \alpha}{x-\alpha}=\lim_{x \rightarrow \alpha}\frac{2sin\ \frac{x-\alpha}{2}cos\ \frac{x+\alpha}{2}}{x-\alpha}=\lim_{x \rightarrow \alpha}\frac{sin\ \frac{x-\alpha}{2}}{\frac{x-\alpha}{2}}\cdot \lim_{x \rightarrow \alpha}cos\ \frac{x+\alpha}{2}=cos\ \alpha\\\\ &\ \ (7)\ \lim_{x \rightarrow +\infty}(\sqrt{x^2+x}-\sqrt{x^2-x})=\lim_{x \rightarrow +\infty}\frac{2x}{\sqrt{x^2+x}+\sqrt{x^2-x}}=\lim_{x \rightarrow +\infty}\frac{2}{\sqrt{1+\frac{1}{x}}+\sqrt{1-\frac{1}{x}}}=1\\\\ &\ \ (8)\ \lim_{x \rightarrow 0}\frac{\left(1-\frac{1}{2}x^2\right)^{\frac{2}{3}}-1}{x\ ln(1+x)}=\lim_{x \rightarrow 0}\frac{\frac{2}{3}\cdot \left(-\frac{1}{2}x^2\right)}{x\cdot x}=-\frac{1}{3} & \end{aligned}   (1) x0limx22x+5=x0lim(x22x+5)=5  (2) α4πlim(sin 2α)3=(α4πlimsin 2α)3=(sin 2π)3=1  (3) x6πlimln(2cos 2x)=ln(x6πlim2cos 2x)=ln(2cos 3π)=ln1=0  (4) x0limxx+11=x0lim(x+1+1)(x+11)x+11=x0limx+1+11=21  (5) x1limx15x4x=x1lim(x1)(5x4+x)(5x4x)(5x4+x)=x1lim((x1)(5x4+x)x25x+4)=        x1lim(5x4+xx4)=23  (6) xαlimxαsin xsin α=xαlimxα2sin 2xαcos 2x+α=xαlim2xαsin 2xαxαlimcos 2x+α=cos α  (7) x+lim(x2+xx2x)=x+limx2+x+x2x2x=x+lim1+x1+1x12=1  (8) x0limx ln(1+x)(121x2)321=x0limxx32(21x2)=31


4.   seek Next Column extremely limit : \begin{aligned}&4. \ Find the following limit :&\end{aligned} 4.  seek Next Column extremely limit

   ( 1 )    lim ⁡ x → ∞ e 1 x ;                                                ( 2 )    lim ⁡ x → 0 l n s i n   x x ;    ( 3 )    lim ⁡ x → ∞ ( 1 + 1 x ) x 2 ;                                 ( 4 )    lim ⁡ x → 0 ( 1 + 3 t a n 2   x ) c o t 2   x ;    ( 5 )    lim ⁡ x → ∞ ( 3 + x 6 + x ) x − 1 2 ;                              ( 6 )    lim ⁡ x → 0 1 + t a n   x − 1 + s i n   x x 1 + s i n 2   x − x ;    ( 7 )    lim ⁡ x → e l n   x − 1 x − e ;                                       ( 8 )    lim ⁡ x → 0 e 3 x − e 2 x − e x + 1 ( 1 − x ) ( 1 + x ) 3 − 1 \begin{aligned} &\ \ (1)\ \ \lim_{x \rightarrow \infty}e^{\frac{1}{x}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \lim_{x \rightarrow 0}ln\frac{sin\ x}{x};\\\\ &\ \ (3)\ \ \lim_{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{\frac{x}{2}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \lim_{x \rightarrow 0}(1+3tan^2\ x)^{cot^2\ x};\\\\ &\ \ (5)\ \ \lim_{x \rightarrow \infty}\left(\frac{3+x}{6+x}\right)^{\frac{x-1}{2}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ \lim_{x \rightarrow 0}\frac{\sqrt{1+tan\ x}-\sqrt{1+sin\ x}}{x\sqrt{1+sin^2\ x}-x};\\\\ &\ \ (7)\ \ \lim_{x \rightarrow e}\frac{ln\ x-1}{x-e};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (8)\ \ \lim_{x \rightarrow 0}\frac{e^{3x}-e^{2x}-e^x+1}{\sqrt[3]{(1-x)(1+x)}-1} & \end{aligned}   (1)  xlimex1;                                              (2)  x0limlnxsin x;  (3)  xlim(1+x1)2x;                               (4)  x0lim(1+3tan2 x)cot2 x;  (5)  xlim(6+x3+x)2x1;                            (6)  x0limx1+sin2 xx1+tan x1+sin x;  (7)  xelimxeln x1;                                     (8)  x0lim3(1x)(1+x)1e3xe2xex+1

Explain :

   ( 1 )   lim ⁡ x → ∞ e 1 x = e lim ⁡ x → ∞ 1 x = e 0 = 1    ( 2 )   lim ⁡ x → 0 l n s i n   x x = l n ( lim ⁡ x → 0 s i n   x x ) = l n 1 = 0    ( 3 )   lim ⁡ x → ∞ ( 1 + 1 x ) x 2 = lim ⁡ x → ∞ [ ( 1 + 1 x ) x ] 1 2 = e 1 2 = e    ( 4 )   lim ⁡ x → 0 ( 1 + 3 t a n 2   x ) c o t 2   x = lim ⁡ x → 0 [ ( 1 + 3 t a n 2   x ) 1 3 c o t 2   x ] 3 = e 3    ( 5 )   lim ⁡ x → ∞ ( 3 + x 6 + x ) x − 1 2 = lim ⁡ x → ∞ [ ( 1 − 3 6 + x ) − 6 + x 3 ] − 3 2 ⋅ lim ⁡ x → ∞ ( 1 − 3 6 + x ) − 7 2 = e − 3 2    ( 6 )   lim ⁡ x → 0 1 + t a n   x − 1 + s i n   x x 1 + s i n 2   x − x = lim ⁡ x → 0 t a n   x − s i n   x x ( 1 + s i n 2   x − 1 ) ( 1 + t a n   x + 1 + s i n   x ) =          lim ⁡ x → 0 ( s i n   x x ⋅ s e c   x − 1 1 + s i n 2   x − 1 ⋅ 1 1 + t a n   x + 1 + s i n   x ) =          lim ⁡ x → 0 s i n   x x ⋅ lim ⁡ x → 0 1 2 x 2 1 2 s i n 2   x ⋅ lim ⁡ x → 0 1 1 + t a n   x + 1 + s i n   x = 1 2    ( 7 )   Make t = x − e , be x = t + e , When x → e when , t → 0 , lim ⁡ x → e l n   x − 1 x − e = lim ⁡ t → 0 l n ( t + e ) − l n   e t = lim ⁡ t → 0 l n ( 1 + t e ) t = 1 e    ( 8 )   lim ⁡ x → 0 e 3 x − e 2 x − e x + 1 ( 1 − x ) ( 1 + x ) 3 − 1 = lim ⁡ x → 0 ( e 2 x − 1 ) ( e x − 1 ) ( 1 − x 2 ) 1 3 − 1 = lim ⁡ x → 0 2 x ⋅ x − 1 3 x 2 = − 6 \begin{aligned} &\ \ (1)\ \lim_{x \rightarrow \infty}e^{\frac{1}{x}}=e^{ {\displaystyle \lim_{x \rightarrow \infty}\frac{1}{x}}}=e^0=1\\\\ &\ \ (2)\ \lim_{x \rightarrow 0}ln\frac{sin\ x}{x}=ln\left(\lim_{x \rightarrow 0}\frac{sin\ x}{x}\right)=ln1=0\\\\ &\ \ (3)\ \lim_{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{\frac{x}{2}}=\lim_{x \rightarrow \infty}\left[\left(1+\frac{1}{x}\right)^x\right]^{\frac{1}{2}}=e^{\frac{1}{2}}=\sqrt{e}\\\\ &\ \ (4)\ \lim_{x \rightarrow 0}(1+3tan^2\ x)^{cot^2\ x}=\lim_{x \rightarrow 0}[(1+3tan^2\ x)^{\frac{1}{3}cot^2\ x}]^3=e^3\\\\ &\ \ (5)\ \lim_{x \rightarrow \infty}\left(\frac{3+x}{6+x}\right)^{\frac{x-1}{2}}=\lim_ {x \rightarrow \infty}\left[\left(1-\frac{3}{6+x}\right)^{-\frac{6+x}{3}}\right]^{-\frac{3}{2}}\cdot \lim_{x \rightarrow \infty}\left(1-\frac{3}{6+x}\right)^{-\frac{7}{2}}=e^{-\frac{3}{2}}\\\\ &\ \ (6)\ \lim_{x \rightarrow 0}\frac{\sqrt{1+tan\ x}-\sqrt{1+sin\ x}}{x\sqrt{1+sin^2\ x}-x}=\lim_{x \rightarrow 0}\frac{tan\ x-sin\ x}{x(\sqrt{1+sin^2\ x}-1)(\sqrt{1+tan\ x}+\sqrt{1+sin\ x})}=\\\\ &\ \ \ \ \ \ \ \ \lim_{x \rightarrow 0}\left(\frac{sin\ x}{x}\cdot \frac{sec\ x-1}{\sqrt{1+sin^2\ x}-1}\cdot \frac{1}{\sqrt{1+tan\ x}+\sqrt{1+sin\ x}}\right)=\\\\ &\ \ \ \ \ \ \ \ \lim_{x \rightarrow 0}\frac{sin\ x}{x}\cdot \lim_{x \rightarrow 0}\frac{\frac{1}{2}x^2}{\frac{1}{2}sin^2\ x}\cdot \lim_{x \rightarrow 0}\frac{1}{\sqrt{1+tan\ x}+\sqrt{1+sin\ x}}=\frac{1}{2}\\\\ &\ \ (7)\ Make t=x-e, be x=t+e, When x \rightarrow e when ,t \rightarrow 0,\lim_{x \rightarrow e}\frac{ln\ x-1}{x-e}=\lim_{t \rightarrow 0}\frac{ln(t+e)-ln\ e}{t}=\lim_{t \rightarrow 0}\frac{ln\left(1+\frac{t}{e}\right)}{t}=\frac{1}{e}\\\\ &\ \ (8)\ \lim_{x \rightarrow 0}\frac{e^{3x}-e^{2x}-e^x+1}{\sqrt[3]{(1-x)(1+x)}-1}=\lim_{x \rightarrow 0}\frac{(e^{2x}-1)(e^x-1)}{(1-x^2)^{\frac{1}{3}}-1}=\lim_{x \rightarrow 0}\frac{2x\cdot x}{-\frac{1}{3}x^2}=-6 & \end{aligned}   (1) xlimex1=exlimx1=e0=1  (2) x0limlnxsin x=ln(x0limxsin x)=ln1=0  (3) xlim(1+x1)2x=xlim[(1+x1)x]21=e21=e  (4) x0lim(1+3tan2 x)cot2 x=x0lim[(1+3tan2 x)31cot2 x]3=e3  (5) xlim(6+x3+x)2x1=xlim[(16+x3)36+x]23xlim(16+x3)27=e23  (6) x0limx1+sin2 xx1+tan x1+sin x=x0limx(1+sin2 x1)(1+tan x+1+sin x)tan xsin x=        x0lim(xsin x1+sin2 x1sec x11+tan x+1+sin x1)=        x0limxsin xx0lim21sin2 x21x2x0lim1+tan x+1+sin x1=21  (7)  Make t=xe, be x=t+e, When xe when ,t0,xelimxeln x1=t0limtln(t+e)ln e=t0limtln(1+et)=e1  (8) x0lim3(1x)(1+x)1e3xe2xex+1=x0lim(1x2)311(e2x1)(ex1)=x0lim31x22xx=6


5.   set up f ( x ) stay R On even To continue , And f ( x ) ≠ 0 , φ ( x ) stay R On Yes set The righteous , And from between break spot , be Next Column Chen Statement in which some yes Yes Of ,       which some yes wrong Of ? Such as fruit yes Yes Of , try say bright The reason is from ; Such as fruit yes wrong Of , try to Out want to back example . \begin{aligned}&5. \ set up f(x) stay R Continuous on , And f(x) \neq 0,\varphi(x) stay R There's a definition on , And by the discontinuity , Which of the following statements is true ,\\\\&\ \ \ \ \ What's wrong ? If it's right , Try to explain why ; If it's wrong , Try to give a counterexample .&\end{aligned} 5.  set up f(x) stay R On even To continue , And f(x)=0,φ(x) stay R On Yes set The righteous , And from between break spot , be Next Column Chen Statement in which some yes Yes Of ,      which some yes wrong Of Such as fruit yes Yes Of , try say bright The reason is from ; Such as fruit yes wrong Of , try to Out want to back example .

   ( 1 )    φ [ f ( x ) ] have to Yes between break spot ;                              ( 2 )    [ φ ( x ) ] 2 have to Yes between break spot ;    ( 3 )    f [ φ ( x ) ] not have to Yes between break spot ;                          ( 4 )    φ ( x ) f ( x ) have to Yes between break spot \begin{aligned} &\ \ (1)\ \ \varphi[f(x)] There must be a break point ;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ [\varphi(x)]^2 There must be a break point ;\\\\ &\ \ (3)\ \ f[\varphi(x)] There may not be a discontinuity ;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \frac{\varphi(x)}{f(x)} There must be a break point & \end{aligned}   (1)  φ[f(x)] have to Yes between break spot ;                            (2)  [φ(x)]2 have to Yes between break spot ;  (3)  f[φ(x)] not have to Yes between break spot ;                        (4)  f(x)φ(x) have to Yes between break spot

Explain :

   ( 1 )   wrong Of , φ ( x ) = s g n   x , f ( x ) = e x , φ [ f ( x ) ] ≡ 1 stay R On even To continue    ( 2 )   wrong Of , φ ( x ) = { 1 ,     x ∈ Q , − 1 , x ∈ R \ Q , [ φ ( x ) ] 2 ≡ 1 stay R On even To continue    ( 3 )   Yes Of , φ ( x ) = { 1 ,     x ∈ Q , − 1 , x ∈ R \ Q , f ( x ) = ∣ x ∣ + 1 , f [ φ ( x ) ] ≡ 2 stay R On even To continue    ( 4 )   Yes Of , Such as fruit F ( x ) = φ ( x ) f ( x ) stay R On even To continue , be φ ( x ) = F ( x ) ⋅ f ( x ) also stay R On even To continue , And has know Spear shield \begin{aligned} &\ \ (1)\ In the wrong ,\varphi(x)=sgn\ x,f(x)=e^x,\varphi[f(x)] \equiv 1 stay R Continuous on \\\\ &\ \ (2)\ In the wrong ,\varphi(x)=\begin{cases}1,\ \ \ x \in Q,\\\\-1,x \in R\verb|\|Q,\end{cases}[\varphi(x)]^2 \equiv 1 stay R Continuous on \\\\ &\ \ (3)\ Right ,\varphi(x)=\begin{cases}1,\ \ \ x \in Q,\\\\-1,x \in R\verb|\|Q,\end{cases}f(x)=|x|+1,f[\varphi(x)] \equiv 2 stay R Continuous on \\\\ &\ \ (4)\ Right , If F(x)=\frac{\varphi(x)}{f(x)} stay R Continuous on , be \varphi(x)=F(x)\cdot f(x) Also in the R Continuous on , Conflict with known & \end{aligned}   (1)  wrong Of ,φ(x)=sgn x,f(x)=ex,φ[f(x)]1 stay R On even To continue   (2)  wrong Of ,φ(x)=1,   xQ,1,xR\Q,[φ(x)]21 stay R On even To continue   (3)  Yes Of ,φ(x)=1,   xQ,1,xR\Q,f(x)=x+1,f[φ(x)]2 stay R On even To continue   (4)  Yes Of , Such as fruit F(x)=f(x)φ(x) stay R On even To continue , be φ(x)=F(x)f(x) also stay R On even To continue , And has know Spear shield


6.   set up Letter Count f ( x ) = { e x ,       x < 0 , α + x , x ≥ 0 Should be When how sample choose Choose Count α , only can send have to f ( x ) become by stay ( − ∞ ,   + ∞ ) Inside Of even To continue Letter Count . \begin{aligned}&6. \ Let's set the function f(x)=\begin{cases}e^x,\ \ \ \ \ x \lt 0,\\\\\alpha+x,x \ge 0\end{cases} How to choose numbers \alpha, Can make f(x) Be in (-\infty,\ +\infty) Continuous functions in .&\end{aligned} 6.  set up Letter Count f(x)=ex,     x<0,α+x,x0 Should be When how sample choose Choose Count α, only can send have to f(x) become by stay (, +) Inside Of even To continue Letter Count .

Explain :

   from On first etc. Letter Count Of even To continue sex , f ( x ) stay ( − ∞ , 0 ) and ( 0 , + ∞ ) Inside even To continue , the With want send f ( x ) stay ( − ∞ , + ∞ ) Inside even To continue ,    only want choose Choose Count α , send f ( x ) stay x = 0 It's about even To continue namely can .    stay x = 0 It's about , lim ⁡ x → 0 − f ( x ) = lim ⁡ x → 0 − e x = 1 , lim ⁡ x → 0 + f ( x ) = lim ⁡ x → 0 + ( α + x ) = α , f ( 0 ) = α ,    take α = 1 , be lim ⁡ x → 0 − f ( x ) = lim ⁡ x → 0 + f ( x ) = f ( 0 ) = 1 , the With take α = 1 , f ( x ) Just become by stay ( − ∞ , + ∞ ) Inside Of even To continue Letter Count \begin{aligned} &\ \ Because of the continuity of elementary functions ,f(x) stay (-\infty,0) and (0,+\infty) Internal continuity , So we should make f(x) stay (-\infty,+\infty) Internal continuity ,\\\\ &\ \ Just choose the number \alpha, send f(x) stay x=0 It can be continuous .\\\\ &\ \ stay x=0 It's about ,\lim_{x \rightarrow 0^-}f(x)=\lim_{x \rightarrow 0^-}e^x=1,\lim_{x \rightarrow 0^+}f(x)=\lim_{x \rightarrow 0^+}(\alpha+x)=\alpha,f(0)=\alpha,\\\\ &\ \ take \alpha=1, be \lim_{x \rightarrow 0^-}f(x)=\lim_{x \rightarrow 0^+}f(x)=f(0)=1, So take \alpha=1,f(x) Become in (-\infty,+\infty) Continuous functions in & \end{aligned}    from On first etc. Letter Count Of even To continue sex ,f(x) stay (,0) and (0,+) Inside even To continue , the With want send f(x) stay (,+) Inside even To continue ,   only want choose Choose Count α, send f(x) stay x=0 It's about even To continue namely can .   stay x=0 It's about ,x0limf(x)=x0limex=1,x0+limf(x)=x0+lim(α+x)=α,f(0)=α,   take α=1, be x0limf(x)=x0+limf(x)=f(0)=1, the With take α=1,f(x) Just become by stay (,+) Inside Of even To continue Letter Count

原网站

版权声明
本文为[Navigator_ Z]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/174/202206230349185606.html