当前位置:网站首页>[digital signal processing] linear time invariant system LTI (judge whether a system is a "non time variant" system | case 3)

[digital signal processing] linear time invariant system LTI (judge whether a system is a "non time variant" system | case 3)

2022-06-23 14:09:00 Hanshuliang





One 、 Judge whether the system is " Non time varying "




1、 Case 2


Given Input sequence x ( n ) = { 0 , 1 , 2 , 3 , 4 , 5 , 0 } x(n) = \{ 0, 1 , 2, 3, 4, 5 , 0 \} x(n)={ 0,1,2,3,4,5,0} , n n n Value − 1 -1 1 ~ 5 5 5

 Insert picture description here

Determine the output sequence y ( n ) = x ( n 2 ) y(n) = x(n^2) y(n)=x(n2) Of " Transformation " Operation Yes No " Time does not change " Of ;


y ( n ) = x ( n 2 ) y(n) = x(n^2) y(n)=x(n2) Change operation :

y ( n ) y(n) y(n) Only in n = − 1 , 0 , 1 , 2 n = -1 , 0 , 1 , 2 n=1,0,1,2 When the value is taken , It's worth it ,

If n = 3 n = 3 n=3 , n 2 = 9 n^2 = 9 n2=9 , x ( 9 ) x(9) x(9) No value ;
If n = 4 n = 4 n=4 , n 2 = 16 n^2 = 16 n2=16 , x ( 16 ) x(16) x(16) No value ;
If n = 5 n = 5 n=5 , n 2 = 25 n^2 = 25 n2=25 , x ( 10 ) x(10) x(10) No value ;

therefore , After normal transformation , y ( n ) y(n) y(n) The value is n = 0 , 1 , 2 n = 0 , 1 , 2 n=0,1,2 The value of time ,

When n = − 1 n = -1 n=1 when , y ( n ) = x ( n 2 ) = x ( ( − 1 ) 2 ) = x ( 1 ) = 2 y(n) = x(n^2) = x((-1)^2) = x(1) = 2 y(n)=x(n2)=x((1)2)=x(1)=2 ;
When n = 0 n = 0 n=0 when , y ( n ) = x ( n 2 ) = x ( 0 2 ) = x ( 0 ) = 1 y(n) = x(n^2) = x(0^2) = x(0) = 1 y(n)=x(n2)=x(02)=x(0)=1 ;
When n = 1 n = 1 n=1 when , y ( n ) = x ( n 2 ) = x ( 1 2 ) = x ( 1 ) = 2 y(n) = x(n^2) = x(1^2) = x(1) = 2 y(n)=x(n2)=x(12)=x(1)=2 ;
When n = 2 n = 2 n=2 when , y ( n ) = x ( n 2 ) = x ( 2 2 ) = x ( 4 ) = 5 y(n) = x(n^2) = x(2^2) = x(4) = 5 y(n)=x(n2)=x(22)=x(4)=5 ;

among − 1 -1 1 and 1 1 1 The square of is 1 1 1 , Merge into one ;

x ( n ) x(n) x(n) The value after normal transformation is :

y ( n ) = { 1 , 2 , 5 } y(n) = \{ 1, 2, 5 \} y(n)={ 1,2,5}


① Time invariant system concept


Time invariant system ( time-invariant ) : System features , Does not change with time ;

y ( n − m ) = T [ x ( n − m ) ] y(n - m) = T[x(n-m)] y(nm)=T[x(nm)]

After input delay , The output is also delayed ;


And " Time does not change " The system corresponds to " time varying " System ;


② First transform and then shift


take " Output sequence " Shift , First " Transformation " after " displacement " ;

First the " Input sequence " Conduct " Transformation " operation , obtain " Output sequence " , Then on Output sequence Conduct " displacement " operation ;

among " Transformation " refer to , Discrete time systems , take " Input sequence " Transformation by " Output sequence " , Input sequence To Output sequence Operation between , yes " Transformation " ;

Change operation : First the Input sequence x ( n ) x(n) x(n) Conduct Transformation operation , obtain Output sequence x ( n 2 ) x(n^2) x(n2) ,

Shift operation : then Yes x ( n 2 ) x(n^2) x(n2) Output sequence Shift n − n 0 n - n_0 nn0 obtain x ( ( n − n 0 ) 2 ) x((n-n_0)^2) x((nn0)2) ,

The complete operation process is as follows :

y ( n − n 0 ) = x ( ( n − n 0 ) 2 ) y(n - n_0) = x((n-n_0)^2) y(nn0)=x((nn0)2)


First change , After transformation, the output is :
y ( n ) = { 1 , 2 , 5 } y(n) = \{ 1, 2, 5 \} y(n)={ 1,2,5}

The value of post shift is : Move one bit to the right ;

y ( n − 1 ) = { 0 , 1 , 2 , 5 } y(n-1) = \{ 0, 1, 2, 5 \} y(n1)={ 0,1,2,5}


③ Shift first and then transform


take " Input sequence " Shift , Shift first , take " Input sequence x ( n ) x(n) x(n) " to " displacement " operation , obtain new " Input sequence " by x ( n − n 0 ) x(n-n_0) x(nn0) , then The new input sequence is " Transformation " operation , obtain " Output sequence " ;

The transformation process is T [ x ( n − n 0 ) ] = x ( n 2 − n 0 ) T[x(n - n_0)] = x(n^2 - n_0) T[x(nn0)]=x(n2n0) , Transformation time , Just to n n n Value to n 2 n^2 n2 , n 0 n_0 n0 Fixed value ;

x ( n − n 0 ) x(n-n_0) x(nn0) Transformation time , Only will n n n multiply 2 2 2 , n 0 n_0 n0 unchanged , The transformation result is as follows x ( 2 n − n 0 ) x(2n - n_0) x(2nn0) ;


The whole process is as follows :

T [ x ( n − n 0 ) ] = x ( n 2 − n 0 ) T[x(n - n_0)] = x(n^2 - n_0) T[x(nn0)]=x(n2n0)


First the x ( n ) = { 0 , 1 , 2 , 3 , 4 , 5 , 0 } x(n) = \{ 0, 1 , 2, 3, 4, 5 , 0 \} x(n)={ 0,1,2,3,4,5,0} , n n n Value − 1 -1 1 ~ 5 5 5 , Shift right , The shifted sequence :
x ( n ) = { 0 , 1 , 2 , 3 , 4 , 5 } x(n) = \{ 0, 1 , 2, 3, 4, 5 \} x(n)={ 0,1,2,3,4,5} n n n Value 0 0 0 ~ 6 6 6 , The shifted sequence schema is as follows :

 Insert picture description here
Shift right 1 after , n n n Value From the original − 1 -1 1 ~ 5 5 5 Change into 0 0 0 ~ 6 6 6 ,

y ( n ) y(n) y(n) Only in n = 0 , 1 , 2 n = 0 , 1 , 2 n=0,1,2 When the value is taken , It's worth it ,

If n = 3 n = 3 n=3 , n 2 = 9 n^2 = 9 n2=9 , x ( 9 ) x(9) x(9) No value ;
If n = 4 n = 4 n=4 , n 2 = 16 n^2 = 16 n2=16 , x ( 16 ) x(16) x(16) No value ;
If n = 5 n = 5 n=5 , n 2 = 25 n^2 = 25 n2=25 , x ( 10 ) x(10) x(10) No value ;

therefore , After normal transformation , y ( n ) y(n) y(n) The value is n = 0 , 1 , 2 n = 0 , 1 , 2 n=0,1,2 The value of time ,

When n = 0 n = 0 n=0 when , y ( n ) = x ( n 2 ) = x ( 0 2 ) = x ( 0 ) = 0 y(n) = x(n^2) = x(0^2) = x(0) = 0 y(n)=x(n2)=x(02)=x(0)=0 ;
When n = 1 n = 1 n=1 when , y ( n ) = x ( n 2 ) = x ( 1 2 ) = x ( 1 ) = 1 y(n) = x(n^2) = x(1^2) = x(1) = 1 y(n)=x(n2)=x(12)=x(1)=1 ;
When n = 2 n = 2 n=2 when , y ( n ) = x ( n 2 ) = x ( 2 2 ) = x ( 4 ) = 4 y(n) = x(n^2) = x(2^2) = x(4) = 4 y(n)=x(n2)=x(22)=x(4)=4 ;

x ( n − 1 ) x(n - 1) x(n1) The value after normal transformation is :

T ( x ( n − 1 ) ) = { 0 , 1 , 4 } T(x(n -1 )) = \{ 0, 1, 4 \} T(x(n1))={ 0,1,4}


④ Conclusion


First " Transformation " after " displacement " , The result is x ( ( n − n 0 ) 2 ) x((n-n_0)^2) x((nn0)2) , Output sequence by y ( n − 1 ) = { 0 , 1 , 2 , 5 } y(n-1) = \{ 0, 1, 2, 5 \} y(n1)={ 0,1,2,5}

First " displacement " after " Transformation " , The result is x ( n 2 − n 0 ) x(n^2 - n_0) x(n2n0) , The output sequence is T ( x ( n − 1 ) ) = { 0 , 1 , 4 } T(x(n -1 )) = \{ 0, 1, 4 \} T(x(n1))={ 0,1,4}

The system is " Time varying system " ;

原网站

版权声明
本文为[Hanshuliang]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/02/202202211726425789.html