当前位置:网站首页>OpenPose run command ([email protected])
OpenPose run command ([email protected])
2022-08-02 16:03:00 【zhangyu】
模型说明(BODY_25、COCO 和 MPI 模型)
BODY_25模型(——model_pose BODY_25)Include key points for the body and feet,它基于OpenPose,Real-time multi-person 2D pose estimation using partial affinity fields.
COCO 和 MPI 模型速度较慢,精度较低,And does not include foot key points.They are based on real-time multi-person 2D pose estimation using partial affinity fields in our previous paper.We strongly recommend using onlyBODY_25模型.
CPU pattern for standard recognition
Running on Video
# Ubuntu and Mac
./build/examples/openpose/openpose.bin --video examples/media/video.avi
# With face and hands
./build/examples/openpose/openpose.bin --video examples/media/video.avi --face --hand
:: Windows - Portable Demo
bin\OpenPoseDemo.exe --video examples\media\video.avi
:: With face and hands
bin\OpenPoseDemo.exe --video examples\media\video.avi --face --hand
Running on Webcam
# Ubuntu and Mac
./build/examples/openpose/openpose.bin
# With face and hands
./build/examples/openpose/openpose.bin --face --hand
:: Windows - Portable Demo
bin\OpenPoseDemo.exe
:: With face and hands
bin\OpenPoseDemo.exe --face --hand
Running on Images
# Ubuntu and Mac
./build/examples/openpose/openpose.bin --image_dir examples/media/
# With face and hands
./build/examples/openpose/openpose.bin --image_dir examples/media/ --face --hand
:: Windows - Portable Demo
bin\OpenPoseDemo.exe --image_dir examples\media\
:: With face and hands
bin\OpenPoseDemo.exe --image_dir examples\media\ --face --hand
GPU high-precision identification
- The following commands provide the most accurate results,Achievable body,Hand and face keypoint detection.
- 无法在 CPU 模式下工作,Because it requires a lot of memory,对于 CPU 版本,The only option is to manually crop the characters,以适应 OpenPose The entire area of the provided image
- 对于 body-foot (BODY_25) 模型,它还需要 10.5 GB 的GPU内存(对于COCO模型,约6.7 GB).
- 需要像Titan X, Titan XP,一些 Quadro 模型,P100, V100 等 GPU.
- Including hands and face will be required >= 16GB 的 GPU (所以像 Titan X 和 XPs 这样的 12GB GPU 将不再工作).
- 这些命令在 Titan X The running speed is 2帧/秒(对于身体-foot model for1帧/秒).
- 递增 --net_resolution Will greatly reduce frame rate and increase latency,But may improve accuracy.但是,Not all scenarios warrant this increase in accuracy,A more detailed analysis of each specific scenario is required.例如,It works better for photos of very short people,But it doesn't work well for a large percentage of people.因此,在大多数情况下,Both tall and short people,We all recommend following the commands below for maximum accuracy.
- Do not use this configuration for MPII 模型,This multi-scale setting may compromise its accuracy.此配置仅对 COCO 和 COCO扩展(例如,默认的BODY_25)模型是最佳的.
Method Overview
# Ubuntu and Mac: Body
./build/examples/openpose/openpose.bin --net_resolution "1312x736" --scale_number 4 --scale_gap 0.25
# Ubuntu and Mac: Body + Hand + Face
./build/examples/openpose/openpose.bin --net_resolution "1312x736" --scale_number 4 --scale_gap 0.25 --hand --hand_scale_number 6 --hand_scale_range 0.4 --face
:: Windows - Portable Demo: Body
bin\OpenPoseDemo.exe --net_resolution "1312x736" --scale_number 4 --scale_gap 0.25
:: Windows - Portable Demo: Body + Hand + Face
bin\OpenPoseDemo.exe --net_resolution "1312x736" --scale_number 4 --scale_gap 0.25 --hand --hand_scale_number 6 --hand_scale_range 0.4 --face
3-D Reconstruction
1 Real-time demo
# Ubuntu and Mac
./build/examples/openpose/openpose.bin --flir_camera --3d --number_people_max 1
# With face and hands
./build/examples/openpose/openpose.bin --flir_camera --3d --number_people_max 1 --face --hand
:: Windows - Portable Demo
bin\OpenPoseDemo.exe --flir_camera --3d --number_people_max 1
:: With face and hands
bin\OpenPoseDemo.exe --flir_camera --3d --number_people_max 1 --face --hand
2 Saving 3-D keypoints and video
# Ubuntu and Mac (same flags for Windows version)
./build/examples/openpose/openpose.bin --flir_camera --3d --number_people_max 1 --write_json output_folder_path/ --write_video_3d output_folder_path/video_3d.avi
3 Fast stereo camera image saving (without keypoint detection) for later post-processing
# Ubuntu and Mac (same flags for Windows version)
# Saving video
# Note: saving in PNG rather than JPG will improve image quality, but slow down FPS (depending on hard disk writing speed and camera number)
./build/examples/openpose/openpose.bin --flir_camera --num_gpu 0 --write_video output_folder_path/video.avi --write_video_fps 5
# Saving images
# Note: saving in PNG rather than JPG will improve image quality, but slow down FPS (depending on hard disk writing speed and camera number)
./build/examples/openpose/openpose.bin --flir_camera --num_gpu 0 --write_images output_folder_path/ --write_images_format jpg
4 Reading and processing previouly saved stereo camera images
# Ubuntu and Mac (same flags for Windows version)
# Optionally add `--face` and/or `--hand` to include face and/or hands
# Assuming 3 cameras
# Note: We highly recommend to reduce `--output_resolution`. E.g., for 3 cameras recording at 1920x1080, the resulting image is (3x1920)x1080, so we recommend e.g. 640x360 (x3 reduction).
# Video
./build/examples/openpose/openpose.bin --video output_folder_path/video.avi --3d_views 3 --3d --number_people_max 1 --output_resolution {
desired_output_resolution}
# Images
./build/examples/openpose/openpose.bin --image_dir output_folder_path/ --3d_views 3 --3d --number_people_max 1 --output_resolution {
desired_output_resolution}
5 Reconstruction when the keypoint is visible in at least x camera views out of the total n cameras
# Ubuntu and Mac (same flags for Windows version)
# Reconstruction when a keypoint is visible in at least 2 camera views (assuming `n` >= 2)
./build/examples/openpose/openpose.bin --flir_camera --3d --number_people_max 1 --3d_min_views 2 --output_resolution {
desired_output_resolution}
# Reconstruction when a keypoint is visible in at least max(2, min(4, n-1)) camera views
./build/examples/openpose/openpose.bin --flir_camera --3d --number_people_max 1 --output_resolution {
desired_output_resolution}
Tracking
1 Runtime huge speed up by reducing the accuracy
# Using OpenPose 1 frame, tracking the following e.g., 5 frames
./build/examples/openpose/openpose.bin --tracking 5 --number_people_max 1
2 Runtime speed up while keeping most of the accuracy
:: Using OpenPose 1 frame and tracking another frame
./build/examples/openpose/openpose.bin --tracking 1 --number_people_max 1
3 Visual smoothness
# Running both OpenPose and tracking on each frame. Note: There is no speed up/slow down
./build/examples/openpose/openpose.bin --tracking 0 --number_people_max 1
边栏推荐
猜你喜欢

【进程间通信】信号量的使用/共享内存

十天学习Unity3D脚本(一)九个回调

光导布局设计工具

嵌入式学习硬件篇------初识ARM

net start mysql 服务名无效。
![The relationship between base classes and derived classes [inheritance] / polymorphism and virtual functions / [inheritance and polymorphism] abstract classes and simple factories](/img/c1/c695006706ce91233d9ac8ecb95c50.png)
The relationship between base classes and derived classes [inheritance] / polymorphism and virtual functions / [inheritance and polymorphism] abstract classes and simple factories

【Solidity智能合约基础】-- 基础运算与底层位运算

你的站点可能还没有准备好用于Site KitSite Kit 无法访问 WordPress REST API。请确保其已在您的站点上启用。

消息队列的技术选型

光波导k域布局可视化(“神奇的圆环”)
随机推荐
TypeScript
计算机网络中的安全(一)网络安全的概念与加密原理
shader入门精要2
implement tcp bbr on ns3 (在ns3上实现TCP BBR)
The use of a semaphore/interprocess communication 】 【 Shared memory
剑指offer:合并两个排序的链表
Redis 学习part one
开源一个golang写的游戏服务器框架
光波导应用中的真实光栅效应
JCMsuite应用:四分之一波片
tpproxy-tcp透明代理
Oauth2.0 安全性(以微信授权登陆为例)
unity 和C# 一些官方优化资料
Unity-Post Processing
剑指offer:反转链表
从FAST TCP到POWERTCP
Evaluate multipath BBR congestion control on ns3
queue的c实现
【数组】查表法(闰年)
C#高级教程