当前位置:网站首页>labelme的JSON文件转成COCO数据集格式
labelme的JSON文件转成COCO数据集格式
2022-06-23 14:37:00 【程序员小杜】
# -*- coding:utf-8 -*-
import argparse
import json
from tkinter import image_names
import matplotlib.pyplot as plt
import skimage.io as io
# import cv2
from labelme import utils
import numpy as np
import glob
import PIL.Image
class MyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return super(MyEncoder, self).default(obj)
class labelme2coco(object):
def __init__(self, labelme_json=[], save_json_path='./tran.json'):
self.labelme_json = labelme_json
self.save_json_path = save_json_path
self.images = []
self.categories = []
self.annotations = []
# self.data_coco = {}
self.label = []
self.annID = 1
self.height = 0
self.width = 0
self.save_json()
def data_transfer(self):
for num, json_file in enumerate(self.labelme_json):
with open(json_file, 'r') as fp:
data = json.load(fp) # 加载json文件
self.images.append(self.image(data, num))
for shapes in data['shapes']:
label = shapes['label']
if label not in self.label:
self.categories.append(self.categorie(label))
self.label.append(label)
points = shapes['points'] # 这里的point是用rectangle标注得到的,只有两个点,需要转成四个点
points.append([points[0][0], points[1][1]])
points.append([points[1][0], points[0][1]])
self.annotations.append(self.annotation(points, label, num))
self.annID += 1
def image(self, data, num):
image = {}
print(data["imagePath"])
img = utils.img_b64_to_arr(data['imageData']) # 解析原图片数据
# img=io.imread(data['imagePath']) # 通过图片路径打开图片
# img = cv2.imread(data['imagePath'], 0)
height, width = img.shape[:2]
img = None
image['height'] = height
image['width'] = width
image['id'] = num + 1
image['file_name'] = data['imagePath'].split('/')[-1]
self.height = height
self.width = width
return image
def categorie(self, label):
categorie = {}
categorie['supercategory'] = 'Cancer'
categorie['id'] = len(self.label) + 1 # 0 默认为背景
categorie['name'] = label
return categorie
def annotation(self, points, label, num):
annotation = {}
annotation['segmentation'] = [list(np.asarray(points).flatten())]
annotation['iscrowd'] = 0
annotation['image_id'] = num + 1
# annotation['bbox'] = str(self.getbbox(points)) # 使用list保存json文件时报错(不知道为什么)
# list(map(int,a[1:-1].split(','))) a=annotation['bbox'] 使用该方式转成list
annotation['bbox'] = list(map(float, self.getbbox(points)))
annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
# annotation['category_id'] = self.getcatid(label)
annotation['category_id'] = self.getcatid(label) # 注意,源代码默认为1
annotation['id'] = self.annID
return annotation
def getcatid(self, label):
for categorie in self.categories:
if label == categorie['name']:
return categorie['id']
return 1
def getbbox(self, points):
# img = np.zeros([self.height,self.width],np.uint8)
# cv2.polylines(img, [np.asarray(points)], True, 1, lineType=cv2.LINE_AA) # 画边界线
# cv2.fillPoly(img, [np.asarray(points)], 1) # 画多边形 内部像素值为1
polygons = points
mask = self.polygons_to_mask([self.height, self.width], polygons)
return self.mask2box(mask)
def mask2box(self, mask):
'''从mask反算出其边框
mask:[h,w] 0、1组成的图片
1对应对象,只需计算1对应的行列号(左上角行列号,右下角行列号,就可以算出其边框)
'''
# np.where(mask==1)
index = np.argwhere(mask == 1)
rows = index[:, 0]
clos = index[:, 1]
# 解析左上角行列号
left_top_r = np.min(rows) # y
left_top_c = np.min(clos) # x
# 解析右下角行列号
right_bottom_r = np.max(rows)
right_bottom_c = np.max(clos)
# return [(left_top_r,left_top_c),(right_bottom_r,right_bottom_c)]
# return [(left_top_c, left_top_r), (right_bottom_c, right_bottom_r)]
# return [left_top_c, left_top_r, right_bottom_c, right_bottom_r] # [x1,y1,x2,y2]
return [left_top_c, left_top_r, right_bottom_c - left_top_c,
right_bottom_r - left_top_r] # [x1,y1,w,h] 对应COCO的bbox格式
def polygons_to_mask(self, img_shape, polygons):
mask = np.zeros(img_shape, dtype=np.uint8)
mask = PIL.Image.fromarray(mask)
xy = list(map(tuple, polygons))
PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
mask = np.array(mask, dtype=bool)
return mask
def data2coco(self):
data_coco = {}
data_coco['images'] = self.images
data_coco['categories'] = self.categories
data_coco['annotations'] = self.annotations
return data_coco
def save_json(self):
self.data_transfer()
self.data_coco = self.data2coco()
# 保存json文件
json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4, cls=MyEncoder) # indent=4 更加美观显示
labelme_json = glob.glob(r'./*.json')
# labelme_json=['./1.json']
labelme2coco(labelme_json, '.\\instances_train2017.json') //在这里修改是train还是val

边栏推荐
- Ie mode of selenium edge
- JS的unshift()和shift()
- 2021-04-15
- Converging ecology, enabling safe operation, Huawei cloud security, cloud brain intelligent service security
- 百萬獎金等你來拿,首届中國元宇宙創新應用大賽聯合創業黑馬火熱招募中!
- 去 OPPO 面试, 被问麻了。。。
- The well-known face search engine provokes public anger: just one photo will strip you of your pants in a few seconds
- Selenium Edge的IE模式
- HCIA network foundation
- 乐高宣布涨价,炒家更嗨皮了
猜你喜欢

JSR303数据校验
Redis缓存三大异常的处理方案梳理总结

The work and development steps that must be done in the early stage of the development of the source code of the live broadcasting room

2021-06-07

掌舵9年,艾伦研究所创始CEO光荣退休!他曾预言中国AI将领跑世界

MySQL 创建和管理表

用OBS做直播推流简易教程

KDD'22「阿里」推荐系统中的通用序列表征学习

How to solve the problem that iterative semi supervised training is difficult to implement in ASR training? RTC dev Meetup

2021-04-15
随机推荐
AI intelligent robot saves us time and effort
2021-04-15
JS garbage collection
MySQL高级语句一
JS的unshift()和shift()
Redis缓存三大异常的处理方案梳理总结
ai智能机器人让我们工作省时省力
How to solve the problem that iterative semi supervised training is difficult to implement in ASR training? RTC dev Meetup
Résumé de la méthode de déduction de la force 513 - trouver la valeur du coin inférieur gauche de l'arbre
Distributed database uses logical volume to manage storage expansion
Arrays in JS
Auto - vérification recommandée! Les bogues MySQL ne font pas reculer les transactions, peut - être êtes - vous à risque!
volatile~多线程下变量不可见
进销存软件排行榜前十名!
Uniswap acquires genie, an NFT transaction aggregator. Will the NFT transaction market change?
Top 10 purchase, sales and inventory software rankings!
SFOD:无源域适配升级优化,让检测模型更容易适应新数据(附论文下载)
Introduction to helm basics helm introduction and installation
巴比特 | 元宇宙每日必读:Meta、微软等科技巨头成立元宇宙标准论坛组织,华为、阿里加入,英伟达高管称欢迎来自加密世界的参与者...
WebService接口发布和调用