当前位置:网站首页>Mathematics - Properties of Summation Symbols
Mathematics - Properties of Summation Symbols
2022-08-05 03:25:00 【Code_LT】
1. single sum
∑ i = 1 n f ( x i ) = f ( x 1 ) + f ( x 2 ) + ⋯ + f ( x n ) \sum_{i=1}^nf(x_i)=f(x_1)+f(x_2)+\cdots+f(x_n) i=1∑nf(xi)=f(x1)+f(x2)+⋯+f(xn)
1.1 性质1,提取公因式
若 h ( y , z ) h(y,z) h(y,z)的取值和x无关,则有:
∑ i = 1 n h ( y , z ) f ( x i ) = h ( y , z ) ∑ i = 1 n f ( x i ) \sum_{i=1}^nh(y,z)f(x_i)=h(y,z)\sum_{i=1}^nf(x_i) i=1∑nh(y,z)f(xi)=h(y,z)i=1∑nf(xi)
将变量 i i i写成 x i x_i xi更形象:
∑ x i h ( y , z ) f ( x i ) = h ( y , z ) ∑ x i f ( x i ) \sum_{x_i}h(y,z)f(x_i)=h(y,z)\sum_{x_i}f(x_i) xi∑h(y,z)f(xi)=h(y,z)xi∑f(xi)
Abbreviated above,实际上 x i ∈ X x_i \in X xi∈X, X = { x 1 , x 2 , ⋯ , x n } X=\{x_1,x_2,\cdots,x_n\} X={ x1,x2,⋯,xn}:
∑ x i ∈ X Usually can be abbreviated as ∑ x i ,Indicates to accumulate all x i 可取的值 \sum_{x_i \in X}Usually can be abbreviated as \sum_{x_i},Indicates to accumulate allx_i可取的值 xi∈X∑Usually can be abbreviated as xi∑,Indicates to accumulate allxi可取的值
2. 多重求和
Take the double summation as an example:
∑ i = 1 n ∑ j = 1 m f ( x i ) h ( y j ) = f ( x 1 ) ∑ j = 1 m h ( y j ) + f ( x 2 ) ∑ j = 1 m h ( y j ) + ⋯ + f ( x n ) ∑ j = 1 m h ( y j ) = If it is expanded again, it will be omitted \sum_{i=1}^n\sum_{j=1}^mf(x_i)h(y_j)=f(x_1)\sum_{j=1}^mh(y_j)+f(x_2)\sum_{j=1}^mh(y_j)+\cdots+f(x_n)\sum_{j=1}^mh(y_j)=If it is expanded again, it will be omitted i=1∑nj=1∑mf(xi)h(yj)=f(x1)j=1∑mh(yj)+f(x2)j=1∑mh(yj)+⋯+f(xn)j=1∑mh(yj)=If it is expanded again, it will be omitted
2.1 性质1,The symbol order can be changed
两重:
∑ i = 1 n ∑ j = 1 m f ( x i ) h ( y j ) = ∑ j = 1 m ∑ i = 1 n f ( x i ) h ( y j ) \sum_{i=1}^n{\color{red} \sum_{j=1}^m}f(x_i)h(y_j)={\color{red} \sum_{j=1}^m}\sum_{i=1}^nf(x_i)h(y_j) i=1∑nj=1∑mf(xi)h(yj)=j=1∑mi=1∑nf(xi)h(yj)
注意,When the range of a summation is limited by another variable,The commutative law does not apply,如:
∑ i = 1 n ∑ j = 1 i f ( x i ) h ( y j ) ≠ ∑ j = 1 i ∑ i = 1 n f ( x i ) h ( y j ) \sum_{i=1}^n\sum_{j=1}^{\color{red} i}f(x_i)h(y_j) {\color{red} \neq}\sum_{j=1}^ {\color{red} i}\sum_{i=1}^nf(x_i)h(y_j) i=1∑nj=1∑if(xi)h(yj)=j=1∑ii=1∑nf(xi)h(yj)
多重:
∑ x i ∑ y j ∑ z k f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) = ∑ z k ∑ y j ∑ x i f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f_1(x_i)f_2(y_j)f_3(z_k)=\sum_{z_k}\sum_{y_j}\sum_{x_i}f_1(x_i)f_2(y_j)f_3(z_k) xi∑yj∑zk∑f1(xi)f2(yj)f3(zk)=zk∑yj∑xi∑f1(xi)f2(yj)f3(zk)
f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) f_1(x_i)f_2(y_j)f_3(z_k) f1(xi)f2(yj)f3(zk)Can be seen as a function f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3),A more general form is obtained:
∑ x i ∑ y j ∑ z k f ( x 1 , x 2 , x 3 ) = ∑ z k ∑ y j ∑ x i f ( x 1 , x 2 , x 3 ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f(x_1,x_2,x_3)=\sum_{z_k}\sum_{y_j}\sum_{x_i}f(x_1,x_2,x_3) xi∑yj∑zk∑f(x1,x2,x3)=zk∑yj∑xi∑f(x1,x2,x3)
Keep the premise of interchangeability in mind:x,y,z的取值范围,相互没有影响.
2.1 性质2,Symbols can be found separately
有时候,为了求解的方便,We don't want functions f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3)written as a whole,Instead, they are separated and evaluated separately.
∑ x i ∑ y j ∑ z k f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) = ∑ x i f 1 ( x i ) ∑ y j f 2 ( y j ) ∑ z k f 3 ( z k ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f_1(x_i)f_2(y_j)f_3(z_k)=\sum_{x_i}f_1(x_i)\sum_{y_j}f_2(y_j)\sum_{z_k}f_3(z_k) xi∑yj∑zk∑f1(xi)f2(yj)f3(zk)=xi∑f1(xi)yj∑f2(yj)zk∑f3(zk)
x,y,zThe range of values should also satisfy each other without affecting each other,A simple proof can be done by expanding the calculation.
The advantage of the above properties is that,Complex problems can be divided into three parts and calculated separately,再求乘积.
( ∑ x i f 1 ( x i ) ) ( ∑ y j f 2 ( y j ) ) ( ∑ z k f 3 ( z k ) ) {\color{red}(\sum_{x_i}f_1(x_i))} {\color{green}(\sum_{y_j}f_2(y_j))} {\color{blue}(\sum_{z_k}f_3(z_k))} (xi∑f1(xi))(yj∑f2(yj))(zk∑f3(zk))
边栏推荐
- Syntax basics (variables, input and output, expressions and sequential statements)
- STM32 uses stm32cubemx LL library series tutorial
- From "useable" to "easy to use", domestic software is self-controllable and continues to advance
- 调用阿里云oss和sms服务
- AI+PROTAC | dx/tx completes $5 million seed round
- Beyond YOLO5-Face | YOLO-FaceV2 officially open source Trick+ academic point full
- MRTK3 develops Hololens application - gesture drag, rotate, zoom object implementation
- rpc-remote procedure call demo
- 使用二维码传输文件的小工具 - QFileTrans 1.2.0.1
- ffmpeg 像素格式基础知识
猜你喜欢

On governance and innovation, the 2022 OpenAtom Global Open Source Summit OpenAnolis sub-forum came to a successful conclusion

tree table lookup

2022-08-04 The sixth group, hidden from spring, study notes

Everyone in China said data, you need to focus on core characteristic is what?

人人都在说的数据中台,你需要关注的核心特点是什么?

Details such as compiling pretreatment

The linear table lookup

21 Days Learning Challenge (2) Use of Graphical Device Trees

毕设-基于SSM房屋租赁管理系统

word分栏小记
随机推荐
腾讯云【Hiflow】新时代自动化工具
Thinking (88): Use protobuf custom options for multi-version management of data
Intersection of Boolean Operations in SuperMap iDesktop.Net - Repairing Complex Models with Topological Errors
2022-08-04 第六小组 瞒春 学习笔记
Use SuperMap iDesktopX data migration tool to migrate map documents and symbols
Distributed systems revisited: there will never be a perfect consistency scheme...
运维监控系统之Open-Falcon
word column notes
AI+PROTAC | dx/tx completes $5 million seed round
STM32 uses stm32cubemx LL library series tutorial
Package zip is not available, but is referred to by another package.
The linear table lookup
Call Alibaba Cloud oss and sms services
ASP.NET应用程序--Hello World
How to simulate the background API call scene, very detailed!
【 genius_platform software platform development 】 : seventy-six vs the preprocessor definitions written cow force!!!!!!!!!!(in the other groups conding personnel told so cow force configuration to can
引领数字医学高地,中山医院探索打造未来医院“新范式”
(11) Metaclass
Syntax basics (variables, input and output, expressions and sequential statements)
private封装