当前位置:网站首页>Notes on algebra 10.1: understanding of symmetric polynomials and derivation of cubic resolvents
Notes on algebra 10.1: understanding of symmetric polynomials and derivation of cubic resolvents
2022-06-22 07:06:00 【zorchp】
Write it at the front
In the previous study, I naively thought that the solution of elementary symmetric polynomial representation by symmetric polynomial is to directly apply the formula , No deep understanding Fundamental theorem of symmetric polynomials The derivation process of .
The direct use doctrine can solve some problems , But there will still be some small problems that cannot be solved , Today, I picked up the advanced algebra textbook and read it again , Only then can we truly master the representation of elementary symmetric polynomials of symmetric polynomials , And the cubic resolvent used to calculate and deduce the quartic equation ( Previous blog Have adopted the CAS Calculation , Convenient but I don't know why , Anguish )
The teacher explained something in class , But some jumps , You still have to savor it carefully to realize the truth .
Symmetric polynomials
n n n Multivariate polynomial f ( x 1 , x 2 , ⋯ , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,⋯,xn), If for any i , j , ( 1 ≤ i < j ≤ n ) i,j,\ (1\le i<j\le n) i,j, (1≤i<j≤n), There are
f ( x 1 , ⋯ , x i , ⋯ , x j , ⋯ , x n ) = f ( x 1 , ⋯ , x j , ⋯ , x i , ⋯ , x n ) . f(x_1,\cdots,x_i,\cdots,x_j,\cdots,x_n)=f(x_1,\cdots,x_j,\cdots,x_i,\cdots,x_n). f(x1,⋯,xi,⋯,xj,⋯,xn)=f(x1,⋯,xj,⋯,xi,⋯,xn).
Then the polynomial is called a symmetric polynomial .
Fundamental theorem of symmetric polynomials
For any one n n n Symmetric polynomials of variables f ( x 1 , x 2 , ⋯ , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,⋯,xn) There is one. n n n Multivariate polynomial φ ( y 1 , y 2 , ⋯ , y n ) \varphi(y_1,y_2,\cdots,y_n) φ(y1,y2,⋯,yn) bring
f ( x 1 , x 2 , ⋯ , x n ) = φ ( σ 1 , σ 2 , ⋯ , σ n ) . f(x_1,x_2,\cdots,x_n)=\varphi(\sigma_1,\sigma_2,\cdots,\sigma_n). f(x1,x2,⋯,xn)=φ(σ1,σ2,⋯,σn).
among σ i \sigma_i σi Is an elementary symmetric polynomial , As follows
{ σ 1 = x 1 + x 2 + ⋯ + x n , σ 2 = x 1 x 2 + x 1 x 3 + ⋯ + x n − 1 x n , ⋯ σ n = x 1 x 2 ⋯ x n . \begin{cases} \sigma_1=x_1+x_2+\cdots+x_n,\\ \sigma_2=x_1x_2+x_1x_3+\cdots+x_{n-1}x_n,\\ \cdots\\ \sigma_n=x_1x_2\cdots x_n. \end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧σ1=x1+x2+⋯+xn,σ2=x1x2+x1x3+⋯+xn−1xn,⋯σn=x1x2⋯xn.
prove ( A method of expressing symmetric polynomials as polynomials of elementary symmetric polynomials )
set up f ( x 1 , x 2 , ⋯ , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,⋯,xn)( Arranged in dictionary order ) The first item is
a x 1 l 1 x 2 l 2 ⋯ x n l n , a ≠ 0. (1) ax_1^{l_1}x_2^{l_2}\cdots x_n^{l_n},\quad a\ne0.\tag{1} ax1l1x2l2⋯xnln,a=0.(1)
( 1 ) (1) (1) The formula is f ( x 1 , x 2 , ⋯ , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,⋯,xn) First item of , There must be l i ≥ l 2 ≥ ⋯ ≥ l n ≥ 0 ) l_i\ge l_2\ge\cdots\ge l_n\ge0) li≥l2≥⋯≥ln≥0).
Otherwise , Equipped with l i < l i + 1 l_i<l_{i+1} li<li+1, from f ( x 1 , x 2 , ⋯ , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,⋯,xn) Is a symmetric polynomial , therefore f ( x 1 , x 2 , ⋯ , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,⋯,xn) It contains the following two items at the same time
a x 1 l 1 x 2 l 2 ⋯ x n l n , a x 1 l 1 ⋯ x i l i + 1 x i + 1 l i ⋯ x n l n , ax_1^{l_1}x_2^{l_2}\cdots x_n^{l_n},\quad ax_1^{l_1}\cdots x_i^{l_{i+1}}x_{i+1}^{l_i}\cdots x_n^{l_n}, ax1l1x2l2⋯xnln,ax1l1⋯xili+1xi+1li⋯xnln,
In dictionary order , The latter should precede the former , And the former is the first contradiction .
Make symmetric polynomials
φ 1 = a σ 1 l 1 − l 2 σ 2 l 2 − l 3 ⋯ σ n l n (2) \varphi_1=a\sigma_1^{l_1-l_2}\sigma_2^{l_2-l_3}\cdots \sigma_n^{l_n}\tag{2} φ1=aσ1l1−l2σ2l2−l3⋯σnln(2)
because σ 1 , σ 2 , ⋯ , σ n \sigma_1,\sigma_2,\cdots,\sigma_n σ1,σ2,⋯,σn The first items are x 1 , x 1 x 2 , ⋯ , x 1 x 2 ⋯ x n x_1,x_1x_2,\cdots,x_1x_2\cdots x_n x1,x1x2,⋯,x1x2⋯xn, So the right end of the above formula is just expanded to get
φ 1 = a x 1 l 1 x 2 l 2 ⋯ x n l n , \varphi_1=ax_1^{l_1}x_2^{l_2}\cdots x_n^{l_n}, φ1=ax1l1x2l2⋯xnln,
This also explains why Item by item .
therefore , φ 1 \varphi_1 φ1 And f f f Have the same first item , After subtracting the two, we can just get a symmetric polynomial of smaller degree , namely
f 1 ( x 1 , x 2 , ⋯ , x n ) = f − φ 1 f_1(x_1,x_2,\cdots,x_n)=f-\varphi_1 f1(x1,x2,⋯,xn)=f−φ1
Repeat this , A series of symmetric polynomials with decreasing degree can be obtained , namely
f , f 1 = f − φ 1 , f 2 = f 1 − φ 2 , ⋯ . (3) f,f_1=f-\varphi_1,f_2=f_1-\varphi_2,\cdots.\tag{3} f,f1=f−φ1,f2=f1−φ2,⋯.(3)
set up b x 1 p 1 x 2 p 2 ⋯ x n p n bx_1^{p_1}x_2^{p_2}\cdots x_n^{p_n} bx1p1x2p2⋯xnpn by ( 3 ) (3) (3) The first term of a symmetric polynomial in , ( 1 ) (1) (1) Before ( 3 ) (3) (3), It's about meeting
l 1 ≥ p 1 ≥ p 2 ≥ ⋯ ≥ p n ≥ 0 , l_1\ge p_1\ge p_2\ge\cdots\ge p_n\ge0, l1≥p1≥p2≥⋯≥pn≥0,
obviously , Suitable for the above conditions n n n Tuples ( p 1 , ⋯ , p n ) (p_1,\cdots,p_n) (p1,⋯,pn) There are only a limited number of , therefore ( 3 ) (3) (3) Only a finite number of symmetric polynomials are not zero , There is a positive integer h h h bring f h = 0 f_h=0 fh=0 establish , That means
f ( x 1 , x 2 , ⋯ , x n ) = φ 1 + φ 2 + ⋯ + φ h , f(x_1,x_2,\cdots,x_n)=\varphi_1+\varphi_2+\cdots+\varphi_h, f(x1,x2,⋯,xn)=φ1+φ2+⋯+φh,
namely f ( x 1 , x 2 , ⋯ , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,⋯,xn) The sum of some monomials that can be expressed as elementary symmetric polynomials , That is, symmetric polynomials f ( x 1 , x 2 , ⋯ , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,⋯,xn) It can be expressed in the form of polynomials of elementary symmetric polynomials .
The uniqueness is easily proved .
Above, we introduced the theorem of calculating the representation of symmetric polynomials , Here is a specific application .
- It is difficult to remember the cubic resolvent of quartic equation directly , The derivation method is given here .
Calculate the cubic resolvent of the quartic equation
x 4 + b x 3 + c x 2 + d x + e = 0 , x^4+bx^3+cx^2+dx+e=0, x4+bx3+cx2+dx+e=0,
Cubic resolvent :
x 3 − c x 2 + ( b d − 4 e ) x − b 2 e + 4 c e − d 2 = 0. x^3-cx^2+(bd-4e)x-b^2e+4ce-d^2=0. x3−cx2+(bd−4e)x−b2e+4ce−d2=0.
g ( x ) = ( x − β 1 ) ( x − β 2 ) ( x − β 3 ) = x 3 − ∑ i β i x 2 + ∑ i ≠ j β i β j x − ∏ i β i , g(x)=(x-\beta_1)(x-\beta_2)(x-\beta_3)=x^3-\sum_{i}\beta_ix^2+\sum_{i\ne j}\beta_i\beta_jx-\prod_i\beta_i, g(x)=(x−β1)(x−β2)(x−β3)=x3−i∑βix2+i=j∑βiβjx−i∏βi,
Just calculate the above
− ∑ i β i , ∑ i ≠ j β i β j , − ∏ i β i , -\sum_{i}\beta_i,\ \sum_{i\ne j}\beta_i\beta_j, -\prod_i\beta_i, −i∑βi, i=j∑βiβj,−i∏βi,
Here we will focus on The most difficult item to calculate , That is to say ∏ β i = β 1 β 2 β 3 \prod\beta_i=\beta_1\beta_2\beta_3 ∏βi=β1β2β3, It can be expressed as
f ( α 1 , α 2 , α 3 , α 4 ) = ( α 1 α 2 + α 3 α 4 ) ( α 1 α 3 + α 2 α 4 ) ( α 1 α 4 + α 2 α 3 ) f(\alpha_1,\alpha_2,\alpha_3,\alpha_4)=(\alpha_1\alpha_2+\alpha_3\alpha_4)(\alpha_1\alpha_3+\alpha_2\alpha_4)(\alpha_1\alpha_4+\alpha_2\alpha_3) f(α1,α2,α3,α4)=(α1α2+α3α4)(α1α3+α2α4)(α1α4+α2α3)
obviously , The quaternion polynomial above f ( α 1 , α 2 , α 3 , α 4 ) f(\alpha_1,\alpha_2,\alpha_3,\alpha_4) f(α1,α2,α3,α4) Is a symmetric polynomial , Next, consider how to use the polynomial form of elementary symmetric polynomials to express f ( α 1 , α 2 , α 3 , α 4 ) f(\alpha_1,\alpha_2,\alpha_3,\alpha_4) f(α1,α2,α3,α4). among , Elementary symmetric polynomials are expressed as follows ( By the way, the relationship between the root and the coefficient )
{ σ 1 = − b = ∑ i α i σ 2 = c = ∑ i ≠ j α i α j σ 3 = − d = ∑ i ≠ j , j ≠ k , k ≠ i α i α j α k σ 4 = e = ∏ i α i \begin{cases} \sigma_1=-b=\sum\limits_i\alpha_i\\ \sigma_2=c=\sum\limits_{i\ne j}\alpha_i\alpha_j\\ \sigma_3=-d=\sum\limits_{i\ne j,j\ne k,k\ne i}\alpha_i\alpha_j\alpha_k\\ \sigma_4=e=\prod\limits_i\alpha_i \end{cases} ⎩⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧σ1=−b=i∑αiσ2=c=i=j∑αiαjσ3=−d=i=j,j=k,k=i∑αiαjαkσ4=e=i∏αi
First of all, we need to find f ( α 1 , α 2 , α 3 , α 4 ) f(\alpha_1,\alpha_2,\alpha_3,\alpha_4) f(α1,α2,α3,α4) First item of , It is not difficult to find that the first item is α 1 3 α 2 α 3 α 4 \alpha_1^3\alpha_2\alpha_3\alpha_4 α13α2α3α4, The corresponding quadruple is ( 3 , 1 , 1 , 1 ) (3,1,1,1) (3,1,1,1), So the first term of the corresponding elementary symmetric polynomial is σ 1 2 σ 4 \sigma_1^2\sigma_4 σ12σ4, In this case, you need to subtract the original polynomial from the first term , as follows
f 1 = f ( α 1 , α 2 , α 3 , α 4 ) − σ 1 2 σ 4 = − 2 ( α 1 2 α 2 2 α 3 α 4 + ⋯ ) + ⋯ \begin{aligned} f_1=f(\alpha_1,\alpha_2,\alpha_3,\alpha_4)-\sigma_1^2\sigma_4 &=-2(\alpha_1^2\alpha_2^2\alpha_3\alpha_4+\cdots)+\cdots \end{aligned} f1=f(α1,α2,α3,α4)−σ12σ4=−2(α12α22α3α4+⋯)+⋯
Now the new polynomial f 1 f_1 f1 The first item of becomes α 1 2 α 2 2 α 3 α 4 \alpha_1^2\alpha_2^2\alpha_3\alpha_4 α12α22α3α4, The corresponding quadruple is ( 2 , 2 , 1 , 1 ) (2,2,1,1) (2,2,1,1), Then the corresponding first item becomes σ 2 σ 4 \sigma_2\sigma_4 σ2σ4, Another step of subtraction :
f 2 = f 1 − σ 2 σ 4 = α 1 2 α 2 2 α 3 2 + ⋯ f_2 = f_1-\sigma_2\sigma_4=\alpha_1^2\alpha_2^2\alpha_3^2+\cdots f2=f1−σ2σ4=α12α22α32+⋯
f 2 f_2 f2 The corresponding quadruple is ( 2 , 2 , 2 , 0 ) (2,2,2,0) (2,2,2,0), So the first item here corresponds to σ 3 2 \sigma_3^2 σ32, So we can start using the undetermined coefficient method ∏ β i = β 1 β 2 β 3 \prod\beta_i=\beta_1\beta_2\beta_3 ∏βi=β1β2β3 了 .
∏ β i = β 1 β 2 β 3 = σ 1 2 σ 4 + u σ 3 2 + v σ 2 σ 4 , \prod\beta_i=\beta_1\beta_2\beta_3=\sigma_1^2\sigma_4+u\sigma_3^2+v\sigma_2\sigma_4, ∏βi=β1β2β3=σ12σ4+uσ32+vσ2σ4,
take α 1 = α 2 = α 3 = 1 , α 4 = 0 \alpha_1=\alpha_2=\alpha_3=1, \alpha_4=0 α1=α2=α3=1,α4=0, obtain
u = 1 , u=1, u=1,
take α i = 1 \alpha_i=1 αi=1, obtain
6 v = − 24 * v = − 4 , 6v=-24\Longrightarrow v=-4, 6v=−24*v=−4,
So we got
∏ β i = β 1 β 2 β 3 = σ 1 2 σ 4 + σ 3 2 − 4 σ 2 σ 4 , \prod\beta_i=\beta_1\beta_2\beta_3=\sigma_1^2\sigma_4+\sigma_3^2-4\sigma_2\sigma_4, ∏βi=β1β2β3=σ12σ4+σ32−4σ2σ4,
Then, the relationship between the root and the coefficient is used for correspondence , You can get
∏ β i = β 1 β 2 β 3 = b 2 e + d 2 − 4 c e . \prod\beta_i=\beta_1\beta_2\beta_3=b^2e+d^2-4ce. ∏βi=β1β2β3=b2e+d2−4ce.
When this is done , The remaining two coefficients can be calculated directly , The previous article mentioned . Here is a brief introduction .
Coefficient of the square term , β i \beta_i βi Just add it up
− ∑ i β i = − ∑ i ≠ j α i α j = − c , -\sum_{i}\beta_i=-\sum\limits_{i\ne j}\alpha_i\alpha_j=-c, −i∑βi=−i=j∑αiαj=−c,
For the coefficient of the first-order term , The basic theorem of symmetric polynomials can also be used , as follows
set up
f ( β 1 , β 2 , β 3 ) = ∑ i ≠ j β i β j = β 1 β 2 + β 1 β 3 + β 2 β 3 , f(\beta_1,\beta_2,\beta_3)=\sum_{i\ne j}\beta_i\beta_j=\beta_1\beta_2+\beta_1\beta_3+\beta_2\beta_3, f(β1,β2,β3)=i=j∑βiβj=β1β2+β1β3+β2β3,
The first item is α 1 2 α 2 α 3 \alpha_1^2\alpha_2\alpha_3 α12α2α3, namely ( 2 , 1 , 1 , 0 ) (2,1,1,0) (2,1,1,0), The first term of the corresponding elementary symmetric polynomial is σ 1 σ 3 \sigma_1\sigma_3 σ1σ3, Subtracting the
f 1 = f − σ 1 σ 3 = − ( α 1 α 2 α 3 α 4 + ⋯ ) , f_1=f-\sigma_1\sigma_3=-(\alpha_1\alpha_2\alpha_3\alpha_4+\cdots), f1=f−σ1σ3=−(α1α2α3α4+⋯),
f 1 f_1 f1 The first item is α 1 α 2 α 3 α 4 \alpha_1\alpha_2\alpha_3\alpha_4 α1α2α3α4, Corresponding 4 Tuples ( 1 , 1 , 1 , 1 ) (1,1,1,1) (1,1,1,1), namely σ 4 \sigma_4 σ4, So we get
f = σ 1 σ 3 + w σ 4 , f=\sigma_1\sigma_3+w\sigma_4, f=σ1σ3+wσ4,
Undetermined coefficient method , take α i = 1 \alpha_i=1 αi=1, obtain
12 = 16 + w , 12=16+w, 12=16+w,
therefore w = − 4 w=-4 w=−4, therefore f = σ 1 σ 3 − 4 σ 4 = b d − 4 e f=\sigma_1\sigma_3-4\sigma_4=bd-4e f=σ1σ3−4σ4=bd−4e, So we get the coefficient of the first-order term .
Sum up , We got
x 3 − c x 2 + ( b d − 4 e ) x − b 2 e + 4 c e − d 2 = 0. x^3-cx^2+(bd-4e)x-b^2e+4ce-d^2=0. x3−cx2+(bd−4e)x−b2e+4ce−d2=0.
Main reference
- Advanced algebra Peking University fourth edition ( Wang Yafang , Shishengming )
边栏推荐
- 【GAN】SentiGAN IJCAI’18 Distinguished Paper
- 编程题:移除数组中的元素(JS实现)
- 2022年毕业生求职找工作青睐哪个行业?
- Leetcode--- search insertion location
- 实训渗透靶场02|3星vh-lll靶机|vulnhub靶场Node1
- Network layer: IP protocol
- 成功解决raise KeyError(f“None of [{key}] are in the [{axis_name}]“)KeyError: “None of [Index([‘age.in.y
- Leetcode: interview question 08.12 Eight queens [DFS + backtrack]
- Developing a contract application with low code
- golang調用sdl2,播放pcm音頻,報錯signal arrived during external code execution。
猜你喜欢

6. 安装ssh连接工具(用于我们连接实验室的服务器)

【GAN】SAGAN ICML‘19

Which is the best agency mode or decoration mode

leetcode:面试题 08.12. 八皇后【dfs + backtrack】

Introduction notes to quantum computing (continuously updated)

【GAN】W-GAN ICLR‘17, ICML‘17

Anaconda introduction, installation and use nanny level tutorial

Fundamentals of neural network (notes, for personal use)
![[Gan] Introduction to Gan basics and dcgan](/img/93/f0287f93283707b7082630cb89daf1.jpg)
[Gan] Introduction to Gan basics and dcgan

首次用DBeaver连接mysql报错
随机推荐
Py之Optbinning:Optbinning的简介、安装、使用方法之详细攻略
golang調用sdl2,播放pcm音頻,報錯signal arrived during external code execution。
Use of sessionstorage and localstorage
Realization of median filter with MATLAB
Introduction to 51 Single Chip Microcomputer -- digital clock
What exactly is the open source office of a large factory like?
Mid year summary of 33 year old programmer
Introduction to 51 single chip microcomputer - matrix key
Introduction to 51 Single Chip Microcomputer -- timer and external interrupt
Rebuild binary tree
Multi camera data collection based on Kinect azure (II)
Py's optbinning: introduction, installation and detailed introduction of optbinning
实训渗透靶场02|3星vh-lll靶机|vulnhub靶场Node1
Great progress in code
Languo technology helps the ecological prosperity of openharmony
Introduction to 51 Single Chip Microcomputer -- digital tube
RT-Thread临界段的保护
EMC solutions
Leetcode--- search insertion location
Error when connecting MySQL with dbeaver for the first time