当前位置:网站首页>[image fusion] multimodal medical image fusion based on coupled feature learning with matlab code
[image fusion] multimodal medical image fusion based on coupled feature learning with matlab code
2022-06-26 06:54:00 【Matlab scientific research studio】
1 brief introduction
Multimodal image fusion aims to combine relevant information from images acquired with different sensors. In medical imaging, fused images play an essential role in both standard and automated diagnosis. In this paper, we propose a novel multimodal image fusion method based on coupled dictionary learning. The proposed method is general and can be employed for different medical imaging modalities. Unlike many current medical fusion methods, the proposed approach does not suffer from intensity attenuation nor loss of critical information. Specifically, the images to be fused are decomposed into coupled and independent components estimated using sparse representations with identical supports and a Pearson correlation constraint, respectively. An alternating minimization algorithm is designed to solve the resulting optimization problem. The final fusion step uses the max-absolute-value rule. Experiments are conducted using various pairs of multimodal inputs, including real MR-CT and MR-PET images. The resulting performance and execution times show the competitiveness of the proposed method in comparison with state-of-the-art medical image fusion methods.
2 Part of the code
%%% color-greyscale mutimodal image fusion (functional-anatomical)
clear
% clc
addpath('utilities');
%% fusion problem
% fusion_mods = 'T2-PET';
% fusion_mods = 'T2-TC';
fusion_mods = 'T2-TI';
% fusion_mods = 'Gad-PET';
%% parameters
opts.k = 5; % maximum nnonzero entries in sparse vectors
opts.rho = 10; % optimization penalty term
opts.plot = false; % plot decomposition components
%% loading input images
I1rgb = double(imread(['Source_Images\' fusion_mods '_A.png']))/255;
I1ycbcr = rgb2ycbcr(I1rgb);
I1 = I1ycbcr(:,:,1);
I2 = double(imread(['Source_Images\' fusion_mods '_B.png']))/255;
if size(I2,3)>1, I2 = rgb2gray(I2); end
%% performing decomposition and fusion
n = 32; b = 8;
D0 = DCT(n,b); % initializing the dictionaries with DCT matrices
tic;
[~,~,Ie1,Ie2,D1,D2,A1,A2] = perform_Corr_Ind_Decomp(I1,I2,D0,D0,opts); % Decomposition
[IF, IF_int] = Fuse_color(Ie2,Ie1,D2,D1,A2,A1,I1ycbcr); % Fusion
toc; % runtime
%% results
F = uint8(IF*255);
imwrite(F,['Results\' fusion_mods '_F.png']);
figure(23)
subplot 131
imshow(I1rgb,[])
xlabel('I_1')
subplot 132
imshow(I2,[])
xlabel('I_2')
subplot 133
imshow(IF,[])
xlabel('I^F')
%% dictionary atoms
% ID1 = displayPatches(D1);
% ID2 = displayPatches(D2);
%
% figure(37)
% subplot 121
% imshow(ID1)
% xlabel('D1')
% subplot 122
% imshow(ID2)
% xlabel('D2')
3 Simulation results
4 reference
[1] Veshki F G , Ouzir N , Vorobyov S A , et al. Coupled Feature Learning for Multimodal Medical Image Fusion[J]. 2021.
About bloggers : Good at intelligent optimization algorithms 、 Neural networks predict 、 signal processing 、 Cellular automata 、 The image processing 、 Path planning 、 UAV and other fields Matlab Simulation , relevant matlab Code problems can be exchanged by private letter .
Some theories cite network literature , If there is infringement, contact the blogger to delete .
边栏推荐
- Past events of Xinhua III
- Judgment of SQL null value
- MATLAB线性规划模型学习笔记
- [004] [stm32] MDK project configuration and commissioning
- MySQL delete in without index
- 高德地图使用自定义地图无效问题
- Decompile Android applications, interview Android
- 【图像增强】基于人工多重曝光融合AMEF实现图像去雾附matlab代码
- Lightgbm-- parameter adjustment notes
- 解决dialog 底部透明的问题
猜你喜欢
Decompile Android applications, interview Android
Reasons why MySQL indexes are not effective
MySQL 数据库的小白安装与登录
Open source demo| you draw and I guess -- make your life more interesting
Analyse d'un problème classique
I caught a 10-year-old Alibaba test developer in the company. After chatting with him, I realized everything
“试用期避免被辞退“ 指南攻略
cocoscreator播放Spine动画
LabVIEW Arduino TCP/IP遠程智能家居系統(項目篇—5)
【图像融合】基于耦合特征学习的多模式医学图像融合附matlab代码
随机推荐
Format one insert per line using mysqldump- Using mysqldump to format one insert per line?
Bugku exercise ---misc--- prosperity, strength and democracy
SQL基础
Interviewer: what is the difference between a test plan and a test plan?
[004] [stm32] MDK project configuration and commissioning
PyTorch搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)
Promise API for getting started with the web
STM 32 使用cube 生成TIM触发ADC并通过DMA传输的问题
SHOW语句用法补充
C# Nuget离线缓存包安装
淺析一道經典題
Hudi compilation of data Lake architecture
【图像分割】基于最大主曲率实现视网膜眼底图像中的血管提取附matlab代码
【元胞自动机】基于元胞自动机实现高速公路收费站交通流问题附matlab代码
分析 NFT 项目的 5 个指标
China polyimide film market demand and future investment risk outlook report 2022-2027
[digital signal processing] basic sequence (basic sequence lists | unit pulse sequence | unit pulse function | discrete unit pulse function | difference between unit pulse function and discrete unit p
If you meet a female driver who drives didi as an amateur, you can earn 500 yuan a day!
营销技巧:相比较讲产品的优点,更有效的是要向客户展示使用效果
如何把数据库的数据传给复选框