当前位置:网站首页>Spectral clustering | Laplace matrix
Spectral clustering | Laplace matrix
2022-07-23 11:13:00 【I'm a girl, I don't program yuan】
List of articles
The concept of spectral clustering
The essence of spectrum clustering is to use the similarity between samples , After dimensionality reduction, use clustering algorithm to cluster nodes .
The eigenvalue of the Laplace matrix used is called “ Spectrum ”.
Laplace matrix
① Sample similarity matrix S:
We have n Samples , The similarity between two samples can be obtained by using some similarity measurement method . Such as Gaussian similarity :
S i , j = e x p ( − ∣ ∣ x i − x j ∣ ∣ 2 2 2 σ 2 ) S_{i,j}=exp(-\frac{||x_i-x_j||_2^2}{2\sigma^2}) Si,j=exp(−2σ2∣∣xi−xj∣∣22)
Get the similarity matrix of the sample , Write it down as S.
② Adjacency matrix A:
For each sample point , take k The nearest neighbor acts as its neighbor node , Construct adjacency matrix A.
That is, if i yes j Of k Close neighbors and j yes i Of k a near neighbor , be A i , j = S i , j A_{i,j}=S_{i,j} Ai,j=Si,j, otherwise A i , j = 0 A_{i,j}=0 Ai,j=0
③ Degree matrix D:
D It's a diagonal matrix , The diagonal element is the degree of each node , The rest of the elements are 0.
④ Non standardized Laplace matrix :
L=D-A
⑤ Standardized Laplace matrix :
L s y m = D − 1 2 L D − 1 2 L_{sym}=D^{-\frac{1}{2}}LD^{-\frac{1}{2}} Lsym=D−21LD−21
here L s y m L_{sym} Lsym There is an important property : Of Laplace matrix 0 Multiplicity of eigenvalues k Equal to the number of connected components in its corresponding graph .
Steps of spectrum clustering
Input : Sample set D=(𝑥1,𝑥2,…,𝑥𝑛), Dimension after dimension reduction m, Clustering method , Dimension after clustering y
Output : Clustering 𝐶(𝑐1,𝑐2,…𝑐y).
①~⑤: ditto , Find the standardized Laplace matrix ∈ R n ∗ n R_{n*n} Rn∗n
⑥ Find out L s y m L_{sym} Lsym The eigenvalues of the , Take the smallest m Eigenvalues , Find the corresponding eigenvector , Form a n*m Matrix , That is, the characteristic matrix after dimension reduction , Each line corresponds to a sample point .
⑦ Standardize the matrix
⑧ Cluster the normalized eigenvector matrix ( Such as k-means)
边栏推荐
- 面试必备之数据库专题
- JS, pay attention to passing parameters. If it is a string, you need to add escape characters
- 十年架构五年生活-02第一份工作
- Compare the advantages and disadvantages of RDB and AOF modes of redis
- 频谱聚类|拉普拉斯矩阵
- How to merge the website content with video and audio separated? How to write batch download code?
- 2.启动函数返回值的剖析
- MySQL statement queries all child nodes of a level node
- 【无标题】
- ShardingSphere分库分表方案
猜你喜欢

SPR:SUPERVISED PERSONALIZED RANKING BASED ON PRIOR KNOWLEDGE FOR RECOMMENDATION

Fun code rain, share it online~-

Master slave synchronization step read / write separation + self encountered error sharing

8. Surface geometry

超级简单的人脸识别api 只需几行代码就可以实现人脸识别

【Anaconda 环境管理与包管理】

Briefly describe the features and application scenarios of redis

Activiti工作流使用之流程结构介绍

Dictionary creation and copying
![[pytho-flask筆記5]藍圖簡單使用](/img/0a/00b259f42e2fa83d4871263cc5f184.png)
[pytho-flask筆記5]藍圖簡單使用
随机推荐
EntityManagerFactory和EntityManager的一个用法探究
Activiti工作流使用之项目实例
讲师征集令 | Apache DolphinScheduler Meetup分享嘉宾,期待你的议题和声音!
2.启动函数返回值的剖析
When using cache in sprintboot, the data cannot be loaded
超级简单的人脸识别api 只需几行代码就可以实现人脸识别
Markdown common syntax records
JS, pay attention to passing parameters. If it is a string, you need to add escape characters
主从同步步骤读写分离+自遇错误分享
【系统问题】.NET Framework 3.5 安装错误
字典创建与复制
adb常用命令
img标签设置height和width无效
[Doris]配置和基本使用contens系统(有时间继续补充内容)
Flask源码剖析(一)请求入口
【Anaconda 环境管理与包管理】
Data Lake: introduction to Apache iceberg
js中拼接字符串,注意传参,若为字符串,则需要加转义字符
【pyradiomics】bugFix:GLCM特征时:IndexError: arrays used as indices must be of integer (or boolean) type
给图片人脸部分加上马赛克