当前位置:网站首页>Partition data 2
Partition data 2
2022-07-24 10:33:00 【nb1232】
import math
import numpy as np
import torch
from torch import nn
import matplotlib.pyplot as plt
import torchvision.datasets as datasets
from torch.utils import data
from torchvision import transforms
from torch.utils.data import Dataset
import torchvision
train_data=datasets.CIFAR10(root="../data", train=True, transform=transforms.ToTensor(), download=True)
test_data=datasets.CIFAR10(root="../data", train=False, transform=transforms.ToTensor(), download=True)
t0=[ i for i, x in enumerate(train_data.targets) if x == 0]
t1=[ i for i, x in enumerate(train_data.targets) if x == 1]
t2=[ i for i, x in enumerate(train_data.targets) if x == 2]
t3=[ i for i, x in enumerate(train_data.targets) if x == 3]
t4=[ i for i, x in enumerate(train_data.targets) if x == 4]
t5=[ i for i, x in enumerate(train_data.targets) if x == 5]
t6=[ i for i, x in enumerate(train_data.targets) if x == 6]
t7=[ i for i, x in enumerate(train_data.targets) if x == 7]
t8=[ i for i, x in enumerate(train_data.targets) if x == 8]
t9=[ i for i, x in enumerate(train_data.targets) if x == 9]
label0=[]
for i in t0:
label0.append(train_data.targets[i])
label1=[]
for i in t1:
label1.append(train_data.targets[i])
label2=[]
for i in t2:
label2.append(train_data.targets[i])
label3=[]
for i in t3:
label3.append(train_data.targets[i])
label4=[]
for i in t4:
label4.append(train_data.targets[i])
label5=[]
for i in t5:
label5.append(train_data.targets[i])
label6=[]
for i in t6:
label6.append(train_data.targets[i])
label7=[]
for i in t7:
label7.append(train_data.targets[i])
label8=[]
for i in t8:
label8.append(train_data.targets[i])
label9=[]
for i in t9:
label9.append(train_data.targets[i])
data0=np.array([])
data1=np.array([])
data2=np.array([])
data3=np.array([])
data4=np.array([])
data5=np.array([])
data6=np.array([])
data7=np.array([])
data8=np.array([])
data9=np.array([])
for i in range(len(train_data.data)):
if i in t0:
data0=np.append(data0,train_data.data[i])
elif i in t1:
data1=np.append(data1,train_data.data[i])
elif i in t2:
data2=np.append(data2,train_data.data[i])
elif i in t3:
data3=np.append(data3,train_data.data[i])
elif i in t4:
data4=np.append(data4,train_data.data[i])
elif i in t5:
data5=np.append(data5,train_data.data[i])
elif i in t6:
data6=np.append(data6,train_data.data[i])
elif i in t7:
data7=np.append(data7,train_data.data[i])
elif i in t8:
data8=np.append(data8,train_data.data[i])
elif i in t9:
data9=np.append(data9,train_data.data[i])
data0=np.transpose((data0),(0,3,1,2))
data1=np.transpose((data1),(0,3,1,2))
data2=np.transpose((data2),(0,3,1,2))
data3=np.transpose((data3),(0,3,1,2))
data4=np.transpose((data4),(0,3,1,2))
data5=np.transpose((data5),(0,3,1,2))
data6=np.transpose((data6),(0,3,1,2))
data7=np.transpose((data7),(0,3,1,2))
data8=np.transpose((data8),(0,3,1,2))
data9=np.transpose((data9),(0,3,1,2))
data0= torch.tensor((data0 - np.min(data0)) / (np.max(data0) - np.min(data0)))
data1= torch.tensor((data1 - np.min(data1)) / (np.max(data1) - np.min(data1)))
data2= torch.tensor((data2 - np.min(data2)) / (np.max(data2) - np.min(data2)))
data3= torch.tensor((data3 - np.min(data3)) / (np.max(data3) - np.min(data3)))
data4= torch.tensor((data4 - np.min(data4)) / (np.max(data4) - np.min(data4)))
data5= torch.tensor((data5 - np.min(data5)) / (np.max(data5) - np.min(data5)))
data6= torch.tensor((data6 - np.min(data6)) / (np.max(data6) - np.min(data6)))
data7= torch.tensor((data7 - np.min(data7)) / (np.max(data7) - np.min(data7)))
data8= torch.tensor((data8 - np.min(data8)) / (np.max(data8) - np.min(data8)))
data9= torch.tensor((data9 - np.min(data9)) / (np.max(data9) - np.min(data9)))
class DatasetXY(Dataset):
def __init__(self, x, y):
self._x = x
self._y = y
self._len = len(x)
def __getitem__(self, item): # The value returned in each cycle
return self._x[item], self._y[item]
def __len__(self):
return self._len
dataset0= DatasetXY(data0,label0)
dataset1= DatasetXY(data1,label1)
dataset2= DatasetXY(data2,label2)
dataset3= DatasetXY(data3,label3)
dataset4= DatasetXY(data4,label4)
dataset5= DatasetXY(data5,label5)
dataset6= DatasetXY(data6,label6)
dataset7= DatasetXY(data7,label7)
dataset8= DatasetXY(data8,label8)
dataset9= DatasetXY(data9,label9)
train0_iter=data.DataLoader(dataset0,batch_size=64,num_workers=0)
train1_iter=data.DataLoader(dataset1,batch_size=64,num_workers=0)
train2_iter=data.DataLoader(dataset2,batch_size=64,num_workers=0)
train3_iter=data.DataLoader(dataset3,batch_size=64,num_workers=0)
train4_iter=data.DataLoader(dataset4,batch_size=64,num_workers=0)
train5_iter=data.DataLoader(dataset5,batch_size=64,num_workers=0)
train6_iter=data.DataLoader(dataset6,batch_size=64,num_workers=0)
train7_iter=data.DataLoader(dataset7,batch_size=64,num_workers=0)
train8_iter=data.DataLoader(dataset8,batch_size=64,num_workers=0)
train9_iter=data.DataLoader(dataset9,batch_size=64,num_workers=0)
for x,y in train9_iter:
x=torchvision.utils.make_grid(x)
# print(x)
# x=torch.squeeze(x)
# print(x.shape)
plt.imshow(np.transpose(x.numpy(),(1,2,0)),aspect='auto')
plt.show()
break边栏推荐
- N叉树、page_size、数据库严格模式修改、数据库中delect和drop的不同
- 协议圣经-谈端口和四元组
- Uniapp calendar component
- JSON tutorial [easy to understand]
- CMS vulnerability recurrence - ultra vires vulnerability
- Sentinel 三种流控效果
- Is it safe to open an online stock account?
- Erlang学习番外
- Constant pointer, pointer constant
- Golang migrate is easy to use
猜你喜欢
随机推荐
PC博物馆(1) 1970年 Datapoint 2000
Constant pointer, pointer constant
Adobe Substance 3D Designer 2021软件安装包下载及安装教程
【二叉树先导】树的概念和表示方法
2022, enterprise unified process platform design and integration specifications refer to thubierv0.1
Sentinel 流量控制快速入门
What did zoneawareloadbalancer of ribbon and its parent class do?
js函数调用下载文件链接
[recommendation system] the classic technical architecture of the data flow of the recommendation system + the most complete evolution map of the top 10 deep learning CTR models of Microsoft, Alibaba,
Try the video for 5 minutes [easy to understand]
MySQL - 全文索引
差分约束系统---1且2--2022年5月27日
Mina framework introduction "suggestions collection"
zoj-Swordfish-2022-5-6
ffmpeg花屏解决(修改源码,丢弃不完整帧)
Image processing: floating point number to fixed point number
Volcanic engine: open ByteDance, the same AI infrastructure, a system to solve multiple training tasks
Adobe substance 3D Designer 2021 software installation package download and installation tutorial
Add a love power logo to your website
Analysis of distributed lock redistribution principle









