当前位置:网站首页>若xn>0,且x(n+1)/xn>1-1/n(n=1,2,...),证明级数∑xn发散
若xn>0,且x(n+1)/xn>1-1/n(n=1,2,...),证明级数∑xn发散
2022-06-27 07:45:00 【深海里的鱼(・ω<)*】
题干
若 x n > 0 , 且 x n + 1 x n > 1 − 1 n ( n = 1 , 2 , . . . ) , 证 明 级 数 ∑ n = 1 ∞ x n 发 散 若x_n>0,且\frac{x_{n+1}}{x_n}>1-\frac{1}{n}\,\,\left( n=1,2,... \right) ,证明级数\sum_{n=1}^{\infty}{x_n}发散 若xn>0,且xnxn+1>1−n1(n=1,2,...),证明级数n=1∑∞xn发散
解答
∵ x n + 1 x n > 1 − 1 n = n − 1 n \because \frac{x_{n+1}}{x_n}>1-\frac{1}{n}=\frac{n-1}{n} ∵xnxn+1>1−n1=nn−1
∴ x 3 x 2 > 1 2 , x 4 x 3 > 2 3 , . . . , x n x n − 1 > n − 2 n − 1 \therefore \frac{x_3}{x_2}>\frac{1}{2}\ ,\ \frac{x_4}{x_3}>\frac{2}{3}\ ,\ ...\ ,\ \frac{x_n}{x_{n-1}}>\frac{n-2}{n-1} ∴x2x3>21 , x3x4>32 , ... , xn−1xn>n−1n−2
∵ x n x n − 1 ⋅ x n − 1 x n − 2 ⋯ x 3 x 2 > n − 2 n − 1 ⋅ n − 3 n − 2 ⋯ 1 2 \because \frac{x_n}{x_{n-1}}\cdot \frac{x_{n-1}}{x_{n-2}}\cdots \frac{x_3}{x_2}>\frac{n-2}{n-1}\cdot \frac{n-3}{n-2}\cdots \frac{1}{2} ∵xn−1xn⋅xn−2xn−1⋯x2x3>n−1n−2⋅n−2n−3⋯21
∴ x n x 2 > 1 n − 1 ( n > 3 ) \therefore \frac{x_n}{x_2}>\frac{1}{n-1}\ \left( n>3 \right) ∴x2xn>n−11 (n>3)
∴ x n > x 2 ⋅ 1 n − 1 ( n > 3 ) \therefore x_n>x_2\cdot \frac{1}{n-1}\ \left( n>3 \right) ∴xn>x2⋅n−11 (n>3)
∴ ∑ n = 3 ∞ x n > x 2 ⋅ ∑ n = 2 ∞ 1 n \therefore \sum_{n=3}^{\infty}{x_n}>x_2\cdot \sum_{n=2}^{\infty}{\frac{1}{n}} ∴n=3∑∞xn>x2⋅n=2∑∞n1
由于 ∑ n = 2 ∞ 1 n 为调和级数,所以 ∑ n = 2 ∞ 1 n 发散 \text{由于}\sum_{n=2}^{\infty}{\frac{1}{n}}\text{为调和级数,所以}\sum_{n=2}^{\infty}{\frac{1}{n}}\text{发散} 由于n=2∑∞n1为调和级数,所以n=2∑∞n1发散
调和级数也就是 p = 1 p=1 p=1时的p级数,证明见正项级数的积分审敛法,p级数的敛散性
∴ ∑ n = 3 ∞ x n 发散 ⇒ ∑ n = 1 ∞ x n 发散 \therefore \sum_{n=3}^{\infty}{x_n}\text{发散}\Rightarrow \sum_{n=1}^{\infty}{x_n}\text{发散\ } ∴n=3∑∞xn发散⇒n=1∑∞xn发散
边栏推荐
- Difference between boundvalueops and opsforvalue
- 突破从0到1后,鲜花电商2.0时代怎么走?
- js输出1-100之间所有的质数并求总个数
- Set the address book function to database maintenance, and add user name and password
- 认识O(NlogN)的排序
- 无论LCD和OLED显示技术有多好,都无法替代这个古老的显示数码管
- JS to determine whether the result is qualified, the range is 0-100, otherwise re-enter
- Apifox learning
- 「短视频」临夏消防救援支队开展消防安全培训授课
- Is futures reverse documentary reliable?
猜你喜欢

野风药业IPO被终止:曾拟募资5.4亿 实控人俞蘠曾进行P2P投资

What is a magnetic separator?

js中判断奇偶的函数,求圆面积的函数
![[compilation principles] review outline of compilation principles of Shandong University](/img/a6/b522a728ff21085411e7452f95872a.png)
[compilation principles] review outline of compilation principles of Shandong University

cookie加密7 fidder分析阶段

File 与 MultipartFile概述

野風藥業IPO被終止:曾擬募資5.4億 實控人俞蘠曾進行P2P投資

One person manages 1000 servers? This automatic operation and maintenance tool must be mastered

JS uses the while cycle to calculate how many years it will take to grow from 1000 yuan to 5000 yuan if the interest rate for many years of investment is 5%

Speech signal feature extraction process: input speech signal - framing, pre emphasis, windowing, fft- > STFT spectrum (including amplitude and phase) - square the complex number - > amplitude spectru
随机推荐
Sword finger offer 07 Rebuild binary tree
volatile 和 synchronized 到底啥区别?
js中判断成绩是否合格,范围在0-100,否则重新输入
MySQL about auto increment sum cannot be empty
Origin of forward slash and backslash
Closure problem
磁选机是什么?
Cookie encryption 6
Apifox learning
JS to judge the odd and even function and find the function of circular area
Custom palette for ggplot2
(resolved) the following raise notimplementederror occurs when Minet tests
cookie加密7 fidder分析阶段
多表联查--07--- Hash join
Idea方法模板
File and multipartfile overview
Windows下mysql-8下载、安装、配置教程
C how to call line and rows when updating the database
Hutool symmetric encryption
Guava scheduled task