当前位置:网站首页>【Debias】Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in RS(KDD‘21)
【Debias】Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in RS(KDD‘21)
2022-07-25 12:00:00 【chad_ lee】
Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in Recommender System (KDD’21)

chart a It is the assumption of our general recommendation model , That is, the matching degree between users and items can reflect whether there will be interaction . But in fact, it should be as shown in the figure c Shown , Interaction is not only related to the degree of matching , It is also related to the deviation between the user and the item itself : Popularity of items 、 Whether users like popular items . Therefore, the recommended model should be modified to :
among user module and item module It's a mlp, The output of the recommended model should be :
y ^ u i = y ^ k ∗ σ ( y ^ i ) ∗ σ ( y ^ u ) \hat{y}_{u i}=\hat{y}_{k} * \sigma\left(\hat{y}_{i}\right) * \sigma\left(\hat{y}_{u}\right) y^ui=y^k∗σ(y^i)∗σ(y^u)
The loss function is designed as :
L O = ∑ ( u , i ) ∈ D − y u i log ( σ ( y ^ u i ) ) − ( 1 − y u i ) log ( 1 − σ ( y ^ u i ) ) L U = ∑ ( u , i ) ∈ D − y u i log ( σ ( y ^ u ) ) − ( 1 − y u i ) log ( 1 − σ ( y ^ u ) ) L I = ∑ ( u , i ) ∈ D − y u i log ( σ ( y ^ i ) ) − ( 1 − y u i ) log ( 1 − σ ( y ^ i ) ) L = L O + α ∗ L I + β ∗ L U \begin{aligned} L_{O}&=\sum_{(u, i) \in D}-y_{u i} \log \left(\sigma\left(\hat{y}_{u i}\right)\right)-\left(1-y_{u i}\right) \log \left(1-\sigma\left(\hat{y}_{u i}\right)\right)\\ L_{U} &=\sum_{(u, i) \in D}-y_{u i} \log \left(\sigma\left(\hat{y}_{u}\right)\right)-\left(1-y_{u i}\right) \log \left(1-\sigma\left(\hat{y}_{u}\right)\right) \\ L_{I} &=\sum_{(u, i) \in D}-y_{u i} \log \left(\sigma\left(\hat{y}_{i}\right)\right)-\left(1-y_{u i}\right) \log \left(1-\sigma\left(\hat{y}_{i}\right)\right)\\ L&=L_{O}+\alpha * L_{I}+\beta * L_{U} \end{aligned} LOLULIL=(u,i)∈D∑−yuilog(σ(y^ui))−(1−yui)log(1−σ(y^ui))=(u,i)∈D∑−yuilog(σ(y^u))−(1−yui)log(1−σ(y^u))=(u,i)∈D∑−yuilog(σ(y^i))−(1−yui)log(1−σ(y^i))=LO+α∗LI+β∗LU
So in order to eliminate the influence of users and items , The unbiased prediction output should be :
y ^ k ∗ σ ( y ^ i ) ∗ σ ( y ^ u ) − c ∗ σ ( y ^ i ) ∗ σ ( y ^ u ) \hat{y}_{k} * \sigma\left(\hat{y}_{i}\right) * \sigma\left(\hat{y}_{u}\right)-c * \sigma\left(\hat{y}_{i}\right) * \sigma\left(\hat{y}_{u}\right) y^k∗σ(y^i)∗σ(y^u)−c∗σ(y^i)∗σ(y^u)
边栏推荐
- [multimodal] transferrec: learning transferable recommendation from texture of modality feedback arXiv '22
- JS流程控制
- 'C:\xampp\php\ext\php_ zip. Dll'-%1 is not a valid Win32 Application Solution
- 【Debias】Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in RS(KDD‘21)
- Javescript loop
- Web APIs(获取元素 事件基础 操作元素)
- GPT plus money (OpenAI CLIP,DALL-E)
- 【图攻防】《Backdoor Attacks to Graph Neural Networks 》(SACMAT‘21)
- 【无标题】
- brpc源码解析(八)—— 基础类EventDispatcher详解
猜你喜欢

【IMX6ULL笔记】--内核底层驱动初步探究

JS运算符

dirReader.readEntries 兼容性问题 。异常错误DOMException

"Mqtt protocol explanation and Practice (access to onenet)" of wiznet w5500 series training activities

brpc源码解析(七)—— worker基于ParkingLot的bthread调度
![There is no sound output problem in the headphone jack on the front panel of MSI motherboard [solved]](/img/e8/d663d0a3c26fce8940f91c6db4afdb.png)
There is no sound output problem in the headphone jack on the front panel of MSI motherboard [solved]

Brief description of model deployment

GPT plus money (OpenAI CLIP,DALL-E)

剑指 Offer 22. 链表中倒数第k个节点

【GCN-RS】Towards Representation Alignment and Uniformity in Collaborative Filtering (KDD‘22)
随机推荐
【云驻共创】AI在数学界有哪些作用?未来对数学界会有哪些颠覆性影响?
Power Bi -- these skills make the report more "compelling"“
任何时间,任何地点,超级侦探,认真办案!
LeetCode 50. Pow(x,n)
JS scope and pre parsing
Functions in JS
Layout management ==pyqt5
W5500 upload temperature and humidity to onenet platform
JS中的数组
Transformer变体(Routing Transformer,Linformer,Big Bird)
Zero-Shot Image Retrieval(零样本跨模态检索)
Review in the middle of 2022 | understand the latest progress of pre training model
brpc源码解析(五)—— 基础类resource pool详解
[MySQL learning 09]
Chapter 4 linear equations
【高并发】SimpleDateFormat类到底为啥不是线程安全的?(附六种解决方案,建议收藏)
Arrays in JS
JS data types and mutual conversion
W5500 multi node connection
已解决The JSP specification requires that an attribute name is preceded by whitespace