当前位置:网站首页>Initialization layer implementation

Initialization layer implementation

2022-06-23 07:11:00 Houston pineapple

application :

Do not change the original image after convolution (H,W)

function :

 

1. Set up location

2. Set the specified value

3. Set up padding

Realization :

#Refer to the official website
import paddle.fluid as fluid
from paddle.fluid.dygraph import Conv2D
from paddle.fluid.initializer import NumpyArrayInitializer
import numpy as np 

np.set_printoptions(precision=1)
def main():
    x = np.random.rand(6,6).astype(np.float32)
    print(x.shape)
    print(x)
    x = x[np.newaxis,np.newaxis,:,:]

    d = 2
    with fluid.dygraph.guard(fluid.CPUPlace()):
        w = np.ones((1,1,3,3)).astype(np.float32)
        pa = fluid.ParamAttr(name = 'conv',initializer=NumpyArrayInitializer(w))
        dilated_conv = Conv2D(num_channels=1,
                              num_filters=1,
                              filter_size=3,
                              dilation=d,
                              padding=0,
                              stride=1,
                              param_attr=pa)
        print(dilated_conv.weight.numpy().squeeze((0,1)))
        print(f'dilation={d}')
        x = fluid.dygraph.to_variable(x)
        y = dilated_conv(x)
        y = y.numpy().squeeze((0,1))
        print(y.shape)
        print(y)

                             
    

function :

原网站

版权声明
本文为[Houston pineapple]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/174/202206230618511967.html