当前位置:网站首页>[examination skills] memory method and simple derivation of Green formula
[examination skills] memory method and simple derivation of Green formula
2022-06-22 00:46:00 【Fish in the deep sea (・ ω& lt;)*】
Video Explanation : Memory method and simple derivation of Green formula
When you learn Green's formula, you will find that the form given in books is not easy to remember .
You may have the following questions
Forget which is positive, counterclockwise or clockwise ?
Forget the P,Q Who should be partial derivative ?
Forget who subtracts who after the partial derivative ?
This article is divided into two parts , The first part is to transform Green's formula into a form that is easier to remember .
The second part is a simple derivation of Green's formula , If you really can't remember in the examination room , It can also be done through 2-3 The calculation of minutes comes from the Green formula .
First we need to know , Green's formula is a bridge between closed curve integral and double integral .
∮ Green's formula ∬ \oint{}\xleftrightarrow{\text{ Green's formula }}\iint{} ∮ Green's formula ∬
Write it out completely
∮ L P d x + Q d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y \oint_L{Pdx+Qdy}=\iint_D{\left( \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \right) dxdy} ∮LPdx+Qdy=∬D(∂x∂Q−∂y∂P)dxdy
Memory method
How to remember counterclockwise , Take out your right hand , Give yourself a thumbs up , We postgraduate candidates are all awesome , Then four fingers bend in the direction ( Anti-clockwise ) Is the positive direction , The students who have the courage to take the postgraduate entrance examination are very good !
Then, how to remember the form in the integrand function of the double integral ?
You can write it in the form of a determinant
∂ Q ∂ x − ∂ P ∂ y = ∣ ∂ ∂ x ∂ ∂ y P Q ∣ \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=\left| \begin{matrix} \frac{\partial}{\partial x}& \frac{\partial}{\partial y}\\ P& Q\\ \end{matrix} \right| ∂x∂Q−∂y∂P=∣∣∣∣∂x∂P∂y∂Q∣∣∣∣
The form of determinant is very regular , Above are two partial derivatives , The following is also in the order of integration P,Q
If you are familiar with Hamiltonian operator (Nabla operator ) Students can also remember this form
∂ Q ∂ x − ∂ P ∂ y = ∣ ∂ ∂ x ∂ ∂ y P Q ∣ = ∣ ∇ × ( P , Q ) ∣ \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=\left| \begin{matrix} \frac{\partial}{\partial x}& \frac{\partial}{\partial y}\\ P& Q\\ \end{matrix} \right|=\left| \nabla \times \left( P,Q \right) \right| ∂x∂Q−∂y∂P=∣∣∣∣∂x∂P∂y∂Q∣∣∣∣=∣∇×(P,Q)∣
Simple deduction
If you can't remember in the examination room , The integrand function in the double integral can also be derived in a simple way .
Use the simplest curve , Counterclockwise rectangle , Let the coordinates of the lower left corner be ( x 0 , y 0 ) (x_0,y_0) (x0,y0), The coordinates in the upper right corner are ( x 1 , y 1 ) (x_1,y_1) (x1,y1)
Do a line integral over it , It can be disassembled into 4 Segment calculation
∮ C = ∫ C 1 + ∫ C 2 + ∫ C 3 + ∫ C 4 \oint_C{}=\int_{C1}{}+\int_{C2}{}+\int_{C3}{}+\int_{C4}{} ∮C=∫C1+∫C2+∫C3+∫C4
about C 1 C1 C1 paragraph , y = y 0 , d y = 0 y=y_0, dy=0 y=y0,dy=0
∫ C 1 P d x + Q d y = ∫ x 0 x 1 P ( x , y 0 ) d x \int_{C1}{Pdx+Qdy}=\int_{x_0}^{x_1}{P\left( x,y_0 \right)dx} ∫C1Pdx+Qdy=∫x0x1P(x,y0)dx
about C 2 C2 C2 paragraph , x = x 1 , d x = 0 x=x_1, dx=0 x=x1,dx=0
∫ C 2 P d x + Q d y = ∫ y 0 y 1 Q ( x 1 , y ) d y \int_{C2}{Pdx+Qdy}=\int_{y_0}^{y_1}{Q\left( x_1,y \right)dy} ∫C2Pdx+Qdy=∫y0y1Q(x1,y)dy
The same can be
∫ C 3 P d x + Q d y = ∫ x 1 x 0 P ( x , y 1 ) d x = − ∫ x 0 x 1 P ( x , y 1 ) d x \int_{C3}{Pdx+Qdy}=\int_{x_1}^{x_0}{P\left( x,y_1 \right)dx}=-\int_{x_0}^{x_1}{P\left( x,y_1 \right)dx} ∫C3Pdx+Qdy=∫x1x0P(x,y1)dx=−∫x0x1P(x,y1)dx
∫ C 4 P d x + Q d y = ∫ y 1 y 0 Q ( x 0 , y ) d y = − ∫ y 0 y 1 Q ( x 0 , y ) d y \int_{C4}{Pdx+Qdy}=\int_{y_1}^{y_0}{Q\left( x_0,y \right)dy}=-\int_{y_0}^{y_1}{Q\left( x_0,y \right)dy} ∫C4Pdx+Qdy=∫y1y0Q(x0,y)dy=−∫y0y1Q(x0,y)dy
Then the integral of the whole line is
∮ L P d x + Q d y = ∫ x 0 x 1 P ( x , y 0 ) d x + ∫ y 0 y 1 Q ( x 1 , y ) d y − ∫ x 0 x 1 P ( x , y 1 ) d x − ∫ y 0 y 1 Q ( x 0 , y ) d y \oint_L{Pdx+Qdy}=\int_{x_0}^{x_1}{P\left( x,y_0 \right)dx}+\int_{y_0}^{y_1}{Q\left( x_1,y \right)dy}-\int_{x_0}^{x_1}{P\left( x,y_1 \right)dx}-\int_{y_0}^{y_1}{Q\left( x_0,y \right)dy} ∮LPdx+Qdy=∫x0x1P(x,y0)dx+∫y0y1Q(x1,y)dy−∫x0x1P(x,y1)dx−∫y0y1Q(x0,y)dy
Merge those with the same integral limit
∮ L P d x + Q d y = ∫ x 0 x 1 [ P ( x , y 0 ) − P ( x , y 1 ) ] d x + ∫ y 0 y 1 [ Q ( x 1 , y ) − Q ( x 0 , y ) ] d y \oint_L{Pdx+Qdy}=\int_{x_0}^{x_1}{\left[ P\left( x,y_0 \right) -P\left( x,y_1 \right) \right]dx}+\int_{y_0}^{y_1}{\left[ Q\left( x_1,y \right) -Q\left( x_0,y \right) \right]dy} ∮LPdx+Qdy=∫x0x1[P(x,y0)−P(x,y1)]dx+∫y0y1[Q(x1,y)−Q(x0,y)]dy
The subtraction in the integrand can be written as a definite integral
P ( x , y 0 ) − P ( x , y 1 ) = ∫ y 1 y 0 P y ( x , y ) d y = − ∫ y 0 y 1 P y ( x , y ) d y P\left( x,y_0 \right) -P\left( x,y_1 \right) =\int_{y_1}^{y_0}{P_y\left( x,y \right) dy}=-\int_{y_0}^{y_1}{P_y\left( x,y \right) dy} P(x,y0)−P(x,y1)=∫y1y0Py(x,y)dy=−∫y0y1Py(x,y)dy
Q ( x 1 , y ) − Q ( x 0 , y ) = ∫ x 0 x 1 Q x ( x , y ) d x Q\left( x_1,y \right) -Q\left( x_0,y \right) =\int_{x_0}^{x_1}{Q_x\left( x,y \right) dx} Q(x1,y)−Q(x0,y)=∫x0x1Qx(x,y)dx
So it can be written in the form of a double integral
∮ L P d x + Q d y = − ∫ x 0 x 1 d x ∫ y 0 y 1 P y ( x , y ) d y + ∫ y 0 y 1 d y ∫ x 0 x 1 Q x ( x , y ) d x \oint_L{Pdx+Qdy}=-\int_{x_0}^{x_1}{dx}\int_{y_0}^{y_1}{P_y\left( x,y \right) dy}+\int_{y_0}^{y_1}{dy}\int_{x_0}^{x_1}{Q_x\left( x,y \right) dx} ∮LPdx+Qdy=−∫x0x1dx∫y0y1Py(x,y)dy+∫y0y1dy∫x0x1Qx(x,y)dx
Because our area is rectangular , So it's easy to swap the order of integrals
− ∫ x 0 x 1 d x ∫ y 0 y 1 P y ( x , y ) d y + ∫ y 0 y 1 d y ∫ x 0 x 1 Q x ( x , y ) d x = ∬ D [ Q x ( x , y ) − P y ( x , y ) ] d x d y -\int_{x_0}^{x_1}{dx}\int_{y_0}^{y_1}{P_y\left( x,y \right) dy}+\int_{y_0}^{y_1}{dy}\int_{x_0}^{x_1}{Q_x\left( x,y \right) dx}=\iint\limits_D{\left[ Q_x\left( x,y \right) -P_y\left( x,y \right) \right] dxdy} −∫x0x1dx∫y0y1Py(x,y)dy+∫y0y1dy∫x0x1Qx(x,y)dx=D∬[Qx(x,y)−Py(x,y)]dxdy
So we can get the form of Green's formula
If the title is given clockwise , Then do it clockwise , The end result will be
∬ D [ P y ( x , y ) − Q x ( x , y ) ] d x d y \iint\limits_D{\left[ P_y\left( x,y \right) -Q_x\left( x,y \right) \right] dxdy} D∬[Py(x,y)−Qx(x,y)]dxdy
In fact, we can also divide the region into small rectangles ( The Tongji book proves that the region is cut horizontally and vertically ), In this way, the Green's formula of any curve can be derived , Interested students can refer to this article
kaysen School leader : The most popular and thorough explanation in the history of Green's formula
Cut the area into small rectangles , Take out each rectangle and convert it from line integral to double integral 
Because the adjacent rectangular line integrals will cancel each other , So adding up the line integrals of the small rectangles is the line integral of the peripheral curves , The double integral of the small rectangle adds up to the double integral of the whole region 
边栏推荐
- Mathematical knowledge: number of approximations - approximations
- Client construction and Optimization Practice
- Hongmeng OS learning (rotation chart, list, icon)
- Brief idea and simple case of JVM tuning - space allocation guarantee mechanism in the old age
- [set static route] "WiFi for private internal network and external network“
- 在徽商期货开户做期货安全吗?
- QT qmediaplayer get audio playback end status
- The tangled truth about NFT and copyright
- 数字化转型的下一个目标:提供准时制信息
- Store API memo
猜你喜欢
随机推荐
Mathematical knowledge: number of approximations - approximations
Farm Game
[PHP] MVCs concept (easy to understand)
[Yugong series] general responsibility allocation principle in June 2022 (IX) - principle of protected variables
leetcode 279. Perfect squares (medium)
你有一个机会,这里有一个舞台
Getting started with go web programming: validators
存储api备忘录
Hongmeng OS learning (rotation chart, list, icon)
对面积的曲面积分中dS与dxdy的转换
程序员坐牢了,会被安排去写代码吗?
跨境贸易和跨境电商的三大区别简单分析
面试官竟然问我订单ID是怎么生成的?难道不是MySQL自增主键?
Win10使用用户初始密码,连接Win Server失败
Root detection implementation
滴滴工程效能平台建设之路
Assembly language example
Arm assembles DCB, DCW, DCD and DCQ parsing
记录一次小jsp的bug
Error in jsonobject getting date type (getsqldate)









