当前位置:网站首页>Defect detection network -- hybrid supervision (kolektor defect data set reproduction)
Defect detection network -- hybrid supervision (kolektor defect data set reproduction)
2022-07-25 09:49:00 【Freak I life】
requirement :
Python 3.8
PyTorch 1.6, 1.8
CUDA 10.0, 10.1
Data sets :
KolektorSDD ,[ Download this ]
stay colab Running examples on :
First the git Clone the source code 
!git clone https://github.com/vicoslab/mixed-segdec-net-comind2021
Then download KSDD Data sets 
% cd /content/mixed-segdec-net-comind2021
% cd /content/mixed-segdec-net-comind2021/datasets/KSDD
!python download_and_extract.py
Then train / Evaluation model :
train_net.py It is the main entrance of training and evaluation
models.py Is a network model file
data/dataset_catalog.py It contains the currently supported data sets 
python -u train_net.py \
--GPU=0 \
--DATASET=KSDD \
--RUN_NAME=RUN_NAME \
--DATASET_PATH=/path/to/dataset \
--RESULTS_PATH=/path/to/save/results \
--SAVE_IMAGES=True \
--DILATE=7 \
--EPOCHS=50 \
--LEARNING_RATE=1.0 \
--DELTA_CLS_LOSS=0.01 \
--BATCH_SIZE=1 \
--WEIGHTED_SEG_LOSS=True \
--WEIGHTED_SEG_LOSS_P=2 \
--WEIGHTED_SEG_LOSS_MAX=1 \
--DYN_BALANCED_LOSS=True \
--GRADIENT_ADJUSTMENT=True \
--FREQUENCY_SAMPLING=True \
--TRAIN_NUM=33 \
--NUM_SEGMENTED=33 \
--FOLD=0

The details are shown in the figure below :



( Set your saved path and training parameters )
After training , The results are stored in results in ,KSDD The evaluation results of all three aspects need to be combined , Use join_folds_results.py:
python -u join_folds_results.py
–RUN_NAME=SAMPLE_RUN
–RESULTS_PATH=/path/to/save/results
–DATASET=KSDD
( Pay attention to the path you save to and the path where the dataset is located )
The above figure is the evaluation result , It can also be used. read_results.py Download the data set and generate the result table of all runs .
边栏推荐
猜你喜欢

T5论文总结

How to install pytorch—— A most simple and effective method!

Minkowskiengine installation

深入理解pytorch分布式并行处理工具DDP——从工程实战中的bug说起

@3-1 CCF 2020-09-1 scale detection point query

The shortest path problem Bellman Ford (single source shortest path) (illustration)

Evolution based on packnet -- review of depth estimation articles of Toyota Research Institute (TRI) (Part 1)

Kotlin协程:协程的基础与使用

Voice chat app source code - produced by NASS network source code

Creation of adjacency table of undirected connected graph output breadth depth traversal
随机推荐
matlab绘图|坐标轴axis的一些常用设置
CUDA explanation - why GPU is used in deep learning
从鱼眼到环视到多任务王炸——盘点Valeo视觉深度估计经典文章(从FisheyeDistanceNet到OmniDet)(下)
初识Opencv4.X----图像模板匹配
~1 CCF 2022-06-2 treasure hunt! Big adventure!
MinkowskiEngine 安装
How to import a large amount of data in MATLAB
从鱼眼到环视到多任务王炸——盘点Valeo视觉深度估计经典文章(从FisheyeDistanceNet到OmniDet)(上)
## 使用 Kotlin USE 简化文件读写
[data mining] Chapter 3 basis of data analysis
Get to know opencv4.x for the first time --- add salt and pepper noise to the image
Class (2) and protocol
1094--谷歌的招聘
In depth interpretation of C language random number function and how to realize random number
降低程序空间复杂度的一些技巧
Definition of cell
打造个人极限写作流程 -转载
Some usages of Matlab's find() function (quickly find qualified values)
初识Opencv4.X----为图像添加高斯噪声
Create personal extreme writing process - reprint