当前位置:网站首页>torch. utils. data. Randomsampler and torch utils. data. Differences between sequentialsampler
torch. utils. data. Randomsampler and torch utils. data. Differences between sequentialsampler
2022-06-27 09:51:00 【jjw_ zyfx】
sampler_train = torch.utils.data.RandomSampler(torch.arange(10))
for i in sampler_train:
print(i)
print('=================')
for k in sampler_train:
print(k)
print('--------------')
sampler_val = torch.utils.data.SequentialSampler(torch.arange(10))
for j in sampler_val:
print(j)
print('=================')
for l in sampler_val:
print(l)
# It can be seen from the results RandomSampler Random sampling is used , Output per call
# In different order . and SequentialSampler Sequential sampling , The result is the same every time
Output results :
3
0
1
6
4
5
9
7
8
2
=================
5
9
6
0
3
4
1
7
8
2
--------------
0
1
2
3
4
5
6
7
8
9
=================
0
1
2
3
4
5
6
7
8
9
边栏推荐
- 集合框架 泛型LinkedList TreeSet
- torch.utils.data.RandomSampler和torch.utils.data.SequentialSampler的区别
- [vivid understanding] the meanings of various evaluation indicators commonly used in deep learning TP, FP, TN, FN, IOU and accuracy
- Quelques exercices sur les arbres binaires
- JS 客户端存储
- 小白也能看懂的网络基础 03 | OSI 模型是如何工作的(经典强推)
- openpyxl表格读取实例
- Pakistani security forces killed 7 terrorists in anti-terrorism operation
- R language uses econcharts package to create microeconomic or macro-economic charts, demand function to visualize demand curve, and customize the parameters of demand function to enrich the visualizat
- 邮件系统(基于SMTP协议和POP3协议-C语言实现)
猜你喜欢
![[registration] infrastructure design: from architecture hot issues to industry changes | tf63](/img/75/b83aaf9610987f695eefe350f8170e.jpg)
[registration] infrastructure design: from architecture hot issues to industry changes | tf63
为智能设备提供更强安全保护 科学家研发两种新方法

不容置疑,这是一个绝对精心制作的项目

Markem imaje马肯依玛士喷码机维修9450E打码机维修

ucore lab3

Installation and usage of source insight tool

有关二叉树的一些练习题

【报名】基础架构设计:从架构热点问题到行业变迁 | TF63

【生动理解】深度学习中常用的各项评价指标含义TP、FP、TN、FN、IoU、Accuracy

通俗易懂理解朴素贝叶斯分类的拉普拉斯平滑
随机推荐
R语言使用econocharts包创建微观经济或宏观经济图、demand函数可视化需求曲线(demand curve)、自定义配置demand函数的参数丰富可视化效果
10 common website security attack means and defense methods
Design of multiple classes
通俗易懂理解樸素貝葉斯分類的拉普拉斯平滑
手机影像内卷几时休?
你睡觉时大脑真在自动学习!首个人体实验证据来了:加速1-4倍重放,深度睡眠阶段效果最好...
Markem Imaje Marken IMAS printer maintenance 9450e printer maintenance
Semi-supervised Learning入门学习——Π-Model、Temporal Ensembling、Mean Teacher简介
Apache POI的读写
Scientists develop two new methods to provide stronger security protection for intelligent devices
最全H桥电机驱动模块L298N原理及应用
[200 opencv routines] 211 Draw vertical rectangle
C# Any()和AII()方法
感应电机直接转矩控制系统的设计与仿真(运动控制matlab/simulink)
【生动理解】深度学习中常用的各项评价指标含义TP、FP、TN、FN、IoU、Accuracy
[200 opencv routines] 212 Draw a slanted rectangle
unity--newtonsoft. JSON parsing
JS 客户端存储
Une compréhension facile de la simplicité de la classification bayésienne du lissage laplacien
为智能设备提供更强安全保护 科学家研发两种新方法