当前位置:网站首页>Implementation of ICEEMDAN Decomposition Code in MATLAB
Implementation of ICEEMDAN Decomposition Code in MATLAB
2022-08-04 07:02:00 【Doraemon 001】
0, Preface
This article explains the ICEEMDAN decomposition method and shares the code.
1. Implementation of ICEEMDAN
The following is the main function part:
ecg=data;%data is a signal data to be decomposed, please replace it with your own data%% parameter settingsNstd = 0.2;nr = 1;MaxIter = 5000;%%ICEEMDAN[modes]=iceemdan(ecg,Nstd,NR,MaxIter,1);%iceemdanmodes=modes';t=1:length(ecg);[a b]=size(modes);figure;subplot(a+1,1,1);plot(t,ecg);% the ECG signal is in the first row of the subplotylabel('original')set(gca,'xtick',[])title('ICEEMDAN')axis tight;for i=2:asubplot(a+1,1,i);plot(t,modes(i-1,:));ylabel (['IMF ' num2str(i-1)]);set(gca,'xtick',[])xlim([1 length(ecg)])endsubplot(a+1,1,a+1)plot(t,modes(a,:))ylabel(['IMF ' num2str(a)])xlim([1 length(ecg)])xlabel('sample point')The code of the sub-function iceemdan:
function [modes]=iceemdan(x,Nstd,NR,MaxIter,SNRFlag)% The current is an improved version, introduced in:%[1] Colominas MA, Schlotthauer G, Torres ME. "Improve complete ensemble EMD: A suitable tool for biomedical signal processing"% Biomedical Signal Processing and Control vol. 14 pp. 19-29 (2014)%The CEEMDAN algorithm was first introduced at ICASSP 2011, Prague, Czech Republic%The authors will be thankful if the users of this code reference the work%where the algorithm was first presented:%[2] Torres ME, Colominas MA, Schlotthauer G, Flandrin P. "A Complete Ensemble Empirical Mode Decomposition with Adaptive Noise"% Proc. 36th Int. Conf. on Acoustics, Speech and Signa Processing ICASSP 2011 (May 22-27, Prague, Czech Republic)%Author: Marcelo A. Colominas%contact: [email protected]%Last version: 25 feb 2015desvio_x=std(x);x=x/desvio_x;[a,b]=size(x);temp=zeros(b,1);modes=zeros(b,1);aux=zeros(a,b);for i=1:NRwhite_noise{i}=randn(size(x));%creates the noise realizationsend;for i=1:NRmodes_white_noise{i}=emd(white_noise{i},'display',0);%calculates the modes of white gaussian noiseend;% save interval modes_white_noisefor i=1:NR %calculates the first modexi=x+Nstd*modes_white_noise{i}(:,1)'/std(modes_white_noise{i}(:,1));[temp, o, it]=emd(xi,'MaxNumIMF',1,'SiftMaxIterations',MaxIter,'display',0);aux=aux+(xi-temp')/NR;% nnnnnnnnnnnnnnnnJub local envelopeend;modes= (x-aux)'; %saves the first modemedias = aux; %r1k=1;aux=zeros(a,b);es_imf = min(size(emd(medias(1,:),'SiftMaxIterations',MaxIter,'display',0)));while es_imf>1 %calculates the rest of the modesfor i=1:NRtamanio=size(modes_white_noise{i});if tamanio(2)>=k+1noise=modes_white_noise{i}(:,k+1);if SNRFlag == 2noise=noise/std(noise); %adjust the std of the noiseend;noise=Nstd*noise;try[temp,o,it]=emd(medias(1,:)+std(medias(1,:))*noise','MaxNumIMF',1,'SiftMaxIterations',MaxIter,'display',0);catchtemp=emd(medias(1,:)+std(medias(1,:))*noise','MaxNumIMF',1,'SiftMaxIterations',MaxIter,'display',0);end;elsetry[temp, o, it]=emd(medias(1,:),'MaxNumIMF',1,'SiftMaxIterations',MaxIter,'display',0);catchtemp=emd(medias(1,:),'MaxNumIMF',1,'SiftMaxIterations',MaxIter,'display',0);end;end;aux=aux+(medias(1,:)+std(medias(1,:))*noise'-temp')/NR;% r2 r3 r...end;modes=[modes (medias(1,:)-aux)'];medias = aux;aux=zeros(size(x));k=k+1;es_imf = min(size(emd(medias(1,:),'SiftMaxIterations',MaxIter,'display',0)));end;modes = [modes (medias(1,:))'];modes=modes*desvio_x;The above code can be run directly to achieve signal decomposition.
边栏推荐
猜你喜欢
随机推荐
【HIT-SC-MEMO3】哈工大2022软件构造 复习笔记3
第九篇 ApplicationContext初始化
Visualization and Animation Technology (3D Visualization)
普通用户 远程桌面连接 服务器 Remote Desktop Service
狗都能看懂的CenterNet讲解及代码复现
Unity Day01
sql常用函数
Visualization and Animation Technology (Computer Animation)
Memory Management
JVM三大常量池与方法区
网络安全行业是蓝景吗?
Jackson 使用样例
给想要转行渗透测试人的忠告
Uos统信系统 CA根证书搭建
Multi-threaded sequential output
RuntimeError: You called this URL via POST, but the URL doesn‘t end in a slash and you have APPEND_S
Stream API
ResNet详解:ResNet到底在解决什么问题?
Flask request 返回网页中 checkbox 是否选中
MySQL之SQL结构化查询语言









