当前位置:网站首页>Transformation of DS and DXDY in surface integral of area
Transformation of DS and DXDY in surface integral of area
2022-06-22 00:46:00 【Fish in the deep sea (・ ω& lt;)*】
As shown in the figure , Hypothetical surface z = f ( x , y ) z=f(x,y) z=f(x,y) On a small piece Δ S \Delta S ΔS stay xoy The projection on the axis is rectangular ABCD, Because the block is small enough , You can think of it as a parallelogram . be Δ S \Delta S ΔS And Δ x Δ y \Delta x \Delta y ΔxΔy The relation of can be regarded as parallelogram EFGH Area and rectangle ABCD The relationship between areas .
rectangular A D AD AD The length of is Δ x \Delta x Δx(x Amount of change ), A B AB AB The length of is Δ y \Delta y Δy(y Amount of change ), be
S A B C D = Δ x Δ y S_{ABCD}=\Delta x\Delta y SABCD=ΔxΔy
E E E The coordinates of the points are ( x , y , f ( x , y ) ) (x,y,f(x,y)) (x,y,f(x,y)), F F F The coordinates of the points are ( x , y + Δ y , f ( x , y + Δ y ) ) (x,y+\Delta y,f(x,y+\Delta y)) (x,y+Δy,f(x,y+Δy)), among f ( x , y + Δ y ) f(x,y+\Delta y) f(x,y+Δy) Linear approximation can be used , namely f ( x , y + Δ y ) ≈ f ( x , y ) + Δ y ⋅ f y ′ f(x,y+\Delta y)\approx f(x,y)+\Delta y\cdot f_y^\prime f(x,y+Δy)≈f(x,y)+Δy⋅fy′, be F F F The coordinates of the points are ( x , y + Δ y , f ( x , y ) + Δ y ⋅ f y ′ ) (x,y+\Delta y,f(x,y)+\Delta y\cdot f_y^\prime) (x,y+Δy,f(x,y)+Δy⋅fy′), The same can be H H H The coordinates of the points are ( x + Δ x , y , f ( x , y ) + Δ x ⋅ f x ′ ) (x+\Delta x,y,f(x,y)+\Delta x\cdot f_x^\prime) (x+Δx,y,f(x,y)+Δx⋅fx′), be
E F → = ( 0 , Δ y , Δ y ⋅ f y ′ ) \overrightarrow{EF}=\left( 0,\Delta y,\Delta y\cdot f_y' \right) EF=(0,Δy,Δy⋅fy′)
E H → = ( Δ x , 0 , Δ x ⋅ f x ′ ) \overrightarrow{EH}=\left( \Delta x,0,\Delta x\cdot f_x' \right) EH=(Δx,0,Δx⋅fx′)
E F → × E H → = ∣ i ^ j ^ k ^ 0 Δ y Δ y ⋅ f y ′ Δ x 0 Δ x ⋅ f x ′ ∣ = ( Δ x Δ y ⋅ f x ′ , Δ x Δ y ⋅ f y ′ , − Δ x Δ y ) = ( f x ′ , f y ′ , − 1 ) Δ x Δ y \overrightarrow{EF}\times \overrightarrow{EH}=\left| \begin{matrix} \widehat{i}& \widehat{j}& \widehat{k}\\ 0& \Delta y& \Delta y\cdot f_y'\\ \Delta x& 0& \Delta x\cdot f_x'\\ \end{matrix} \right|=\left( \Delta x\Delta y\cdot f_x',\Delta x\Delta y\cdot f_y',-\Delta x\Delta y \right) =\left( f_x',f_y',-1 \right) \Delta x\Delta y EF×EH=∣∣∣∣∣∣i0ΔxjΔy0kΔy⋅fy′Δx⋅fx′∣∣∣∣∣∣=(ΔxΔy⋅fx′,ΔxΔy⋅fy′,−ΔxΔy)=(fx′,fy′,−1)ΔxΔy
Δ S = ∣ E F → × E H → ∣ = ( f x ′ ) 2 + ( f y ′ ) 2 + 1 Δ x Δ y \Delta S=\left| \overrightarrow{EF}\times \overrightarrow{EH} \right|=\sqrt{\left( f_x' \right) ^2+\left( f_y' \right) ^2+1}\ \Delta x\Delta y ΔS=∣∣∣EF×EH∣∣∣=(fx′)2+(fy′)2+1 ΔxΔy
Take infinitesimal
d S = ( f x ′ ) 2 + ( f y ′ ) 2 + 1 d x d y dS=\sqrt{\left( f_x' \right) ^2+\left( f_y' \right) ^2+1}\ dxdy dS=(fx′)2+(fy′)2+1 dxdy
边栏推荐
- Document.readyState 如何使用和侦听
- [Yugong series] general responsibility allocation principle in June 2022 (IX) - principle of protected variables
- Win10使用用户初始密码,连接Win Server失败
- 干技术的,追求啥?
- View local IP address in vscode
- 关于一次Web线下面试的思考
- Farm Game
- 过孔式导电滑环怎么用
- Leetcode 279. Carré parfait carré complet (moyen)
- 关于 NFT 和版权的纠结真相
猜你喜欢

Xshell连接虚拟机只能输入public key解决方案【亲测】

珂朵莉树 范围查询 chtholly tree Old driver tree

数据工程系列精讲(第三讲): Data-centric AI 之特征工程

buuctf pwn ciscn_ 2019_ n_ eight

记录一次小jsp的bug

合理选择液压滑环密封间隙的重要性

All kinds of FPN in object detection

客户端建设及调优实践

Query of the range of the cotolly tree chtolly tree old driver tree
![[next] passhref is missing appears after nextjs is packaged](/img/86/e1dd1a3ffcdcf749cda565756e99db.png)
[next] passhref is missing appears after nextjs is packaged
随机推荐
Mathematical knowledge: sum of divisors - divisors
Arm assembles DCB, DCW, DCD and DCQ parsing
Go技术日报(2022-06-20)——Go:简单的优化笔记
JVM調優簡要思想及簡單案例-老年代空間分配擔保機制
qt QMediaPlayer获取音频播放结束状态
力扣每日一题-第24天-485.最大连续1的个数
Use of MySQL performance analysis tools
再次认识 WebAssembly
American tourist visa interview instructions, let me focus!
数据工程系列精讲(第三讲): Data-centric AI 之特征工程
Query of the range of the cotolly tree chtolly tree old driver tree
记录一次小jsp的bug
Root detection implementation
Have you stepped on the 8 most common SQL grammars at work?
Two popular architectures for web application system development
Continuous integration of metersphere and Jenkins
如何判断一个男人将来是穷还是富?
Getting started with go web programming: validators
Overview of embedded system and embedded design software
VScode 中查看本地ip地址