当前位置:网站首页>Good Key, Bad Key (thinking, temporary exchange, classic method)
Good Key, Bad Key (thinking, temporary exchange, classic method)
2022-08-02 03:16:00 【lovesickman】
Good Key, Bad Key (思维,Pro item exchange)
题目描述
There are $ n $ chests. The $ i $ -th chest contains $ a_i $ coins. You need to open all $ n $ chests in order from chest $ 1 $ to chest $ n $ .
There are two types of keys you can use to open a chest:
- a good key, which costs $ k $ coins to use;
- a bad key, which does not cost any coins, but will halve all the coins in each unopened chest, including the chest it is about to open. The halving operation will round down to the nearest integer for each chest halved. In other words using a bad key to open chest $ i $ will do $ a_i = \lfloor{\frac{a_i}{2}\rfloor} $ , $ a_{i+1} = \lfloor\frac{a_{i+1}}{2}\rfloor, \dots, a_n = \lfloor \frac{a_n}{2}\rfloor $ ;
- any key (both good and bad) breaks after a usage, that is, it is a one-time use.
You need to use in total $ n $ keys, one for each chest. Initially, you have no coins and no keys. If you want to use a good key, then you need to buy it.
During the process, you are allowed to go into debt; for example, if you have $ 1 $ coin, you are allowed to buy a good key worth $ k=3 $ coins, and your balance will become $ -2 $ coins.
Find the maximum number of coins you can have after opening all $ n $ chests in order from chest $ 1 $ to chest $ n $ .
输入格式
The first line contains a single integer $ t $ ( $ 1 \leq t \leq 10^4 $ ) — the number of test cases.
The first line of each test case contains two integers $ n $ and $ k $ ( $ 1 \leq n \leq 10^5 $ ; $ 0 \leq k \leq 10^9 $ ) — the number of chests and the cost of a good key respectively.
The second line of each test case contains $ n $ integers $ a_i $ ( $ 0 \leq a_i \leq 10^9 $ ) — the amount of coins in each chest.
The sum of $ n $ over all test cases does not exceed $ 10^5 $ .
输出格式
For each test case output a single integer — the maximum number of coins you can obtain after opening the chests in order from chest $ 1 $ to chest $ n $ .
Please note, that the answer for some test cases won’t fit into 32-bit integer type, so you should use at least 64-bit integer type in your programming language (like long long for C++).
样例 #1
样例输入 #1
5
4 5
10 10 3 1
1 2
1
3 12
10 10 29
12 51
5 74 89 45 18 69 67 67 11 96 23 59
2 57
85 60
样例输出 #1
11
0
13
60
58
提示
In the first test case, one possible strategy is as follows:
- Buy a good key for $ 5 $ coins, and open chest $ 1 $ , receiving $ 10 $ coins. Your current balance is $ 0 + 10 - 5 = 5 $ coins.
- Buy a good key for $ 5 $ coins, and open chest $ 2 $ , receiving $ 10 $ coins. Your current balance is $ 5 + 10 - 5 = 10 $ coins.
- Use a bad key and open chest $ 3 $ . As a result of using a bad key, the number of coins in chest $ 3 $ becomes $ \left\lfloor \frac{3}{2} \right\rfloor = 1 $ , and the number of coins in chest $ 4 $ becomes $ \left\lfloor \frac{1}{2} \right\rfloor = 0 $ . Your current balance is $ 10 + 1 = 11 $ .
- Use a bad key and open chest $ 4 $ . As a result of using a bad key, the number of coins in chest $ 4 $ becomes $ \left\lfloor \frac{0}{2} \right\rfloor = 0 $ . Your current balance is $ 11 + 0 = 11 $ .
At the end of the process, you have $ 11 $ coins, which can be proven to be maximal.
I just don't want to think about itSB
Clearly intuitive,Both operations have two stages,Prove it with neighbor swap.
A prefix sum is maintained after the proof,观察到 /2 ,警觉!observation range,因为 $log_2{10^9} = 29.xxx $ ,所以时间复杂度 O ( 30 n ) O(30n) O(30n)
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <queue>
#include <set>
#include <map>
#include <vector>
#include <sstream>
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define mem(f, x) memset(f,x,sizeof(f))
#define fo(i,a,n) for(int i=(a);i<=(n);++i)
#define fo_(i,a,n) for(int i=(a);i<(n);++i)
#define debug(x) cout<<#x<<":"<<x<<endl;
#define endl '\n'
using namespace std;
//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math,O3")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
template<typename T>
ostream& operator<<(ostream& os,const vector<T>&v){
for(int i=0,j=0;i<v.size();i++,j++)if(j>=5){
j=0;puts("");}else os<<v[i]<<" ";return os;}
template<typename T>
ostream& operator<<(ostream& os,const set<T>&v){
for(auto c:v)os<<c<<" ";return os;}
template<typename T1,typename T2>
ostream& operator<<(ostream& os,const map<T1,T2>&v){
for(auto c:v)os<<c.first<<" "<<c.second<<endl;return os;}
template<typename T>inline void rd(T &a) {
char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {
if (c == '-')f = -1; c = getchar();}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
typedef pair<int,int>PII;
typedef pair<long,long>PLL;
typedef long long ll;
typedef unsigned long long ull;
const int N=2e5+10,M=1e9+7;
ll n,k,m,_;
ll a[N];
void solve(){
cin>>n>>k;
fo(i,1,n)cin>>a[i];
ll sum,ans;
ans = sum = 0;
fo(i,0,n){
ll cnt = 0;
for(int j=i+1;j<=min((int)n,i+31);j++){
ll v = a[j];
v >>= (j-i);
cnt+=v;
}
if(i>=1)
sum += (a[i]-k);
ans = max(sum+cnt,ans);
}
cout<<ans<<endl;
}
int main(){
cin>>_;
while(_--){
solve();
}
return 0;
}
边栏推荐
猜你喜欢
随机推荐
基于分布式随机森林的火电厂燃烧系统设备建模方法
输入延迟切换系统的预测镇定控制
WebShell connection tools (Chinese kitchen knife, WeBaCoo, Weevely) use
JSP Webshell 免杀
Chapter 10 聚类
[LeetCode] 83. Delete duplicate elements in the sorted list
嵌入式分享合集25
Using WebShell to get Shell Skills
MySQL中根据日期进行范围查询
消息队列经典十连问
第一章——线性表(顺序表和链表)
Webshell上传方式
1. 获取数据-requests.get()
PHP WebShell Free Kill
基于优化的多核局部费舍尔判别分析的故障分类
聊聊flink的BoundedOutOfOrdernessTimestampExtractor
Ribbon本地实现负载均衡
Istio微服务治理网格的全方面可视化监控(微服务架构展示、资源监控、流量监控、链路监控)
I will give you a chance to interview in a big factory. Can you interview?Come in and see!
支付通道对接常见的问题有哪些?

![CV-Model [4]: MobileNet v3](/img/a1/fc3901d55b28aa080235f093b94cb4.png)







